

ImageJDev

Curtis Rueden, LOCI
Grant Harris, MBL at Woods Hole

Introduction

● ImageJDev: an NIH-funded project to pro-
duce the next generation of ImageJ

● Partnership between several institutions:
– LOCI at UW-Madison
– MBL at Woods Hole
– Broad Institute of MIT and Harvard
– Fiji group (MPI-CBG, Uni/ETH Zurich, etc.)

See also: imagejdev.org/collaborators

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“Don't be pushed by your
problems. Be led by your
dreams.”
—Anonymous

Vision: Guiding Principles

● Preserve backwards compatibility
● Maintain good performance
● Support N-dimensional imaging
● Use common input and output for data
● Minimize complexity

– Introduce dependencies only when
benefits outweigh disadvantages

● Employ modern software development practices

Vision: The Dream

● What is ImageJ's greatest strength?

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?
– Plugins as modular “building blocks”

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?
– Plugins as modular “building blocks”

● What does modularity gain us?

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?
– Plugins as modular “building blocks”

● What does modularity gain us?
– Modularity facilitates interoperability

Vision: The Need

● Extensibility
● Modularity
● Interoperability

Vision: The Need

● Extensibility
● Modularity
● Interoperability

A system design principle
where the implementation
takes into consideration
future growth. It is a sys-
temic measure of the abil-
ity to extend a system
and the level of effort re-
quired to implement the
extension.
—“Extensibility” on Wikipedia

Vision: The Need

● Extensibility
● Modularity
● Interoperability

The extent to which soft-
ware is composed of
separate, interchange-
able components, called
modules, which represent
a separation of concerns,
and improve maintainabil-
ity by enforcing logical
boundaries between
components.
—“Modularity” on Wikipedia

Vision: The Need

● Extensibility
● Modularity
● Interoperability

The capability of different
programs to exchange
data via a common set of
exchange formats, to
read and write the same
file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
standardization during the
design of a program.
—“Interoperability” on Wikipedia

Vision: The Need

● Extensibility
● Modularity
● Interoperability

The capability of different
programs to exchange
data via a common set of
exchange formats, to
read and write the same
file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
standardization during the
design of a program.
—“Interoperability” on Wikipedia

Vision: The Challenge

● How do we maintain compatibility?
– Will plugins and macros still work?
– Do other programs work with ImageJ 2.0?

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?
● Use standards

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?
● Use standards

2. Implementation: how to preserve
compatibility?

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?
● Use standards

2. Implementation: how to preserve
compatibility?

● Small, “safe” code changes that
preserve existing behavior

Vision: The Process

● Unit tests
– A “safety net” for preserving behavior
– The act of creating them

encourages modular design
● Continuous integration

– An “early warning system”
● Project management tools, etc....

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“Goals are dreams with
deadlines.”
—Diana Scharf Hunt

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“I haven't failed, I've found
10,000 ways that don't
work.”
—Thomas Edison

Design

● Considered several design approaches
– Iterative (current strategy)
– Greenfield (new application)
– Delegation (change IJ1's internals)
– Adaptation (leave IJ1 alone)

● Adaptation: IJ2 includes IJ1 as a library
● IJ1 and IJ2 grow and evolve together
● More slides during roundtable if interest

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“...”
—...

Progress

1) Imglib: an N-dimensional image data model
– Bio-Formats: reading data

2) Automatic plugins for extensible visualization
– Spectral lifetime image data plugin

3) OpenCL-based iterative deconvolution

Progress: Imglib
● Added data types backed by Imglib library

– Currently supports nine pixel types:
● Signed and unsigned integer, floating point
● Bit depths: 8, 16, 32, and 64 bit

● Many possible storage strategies
● Type-independent plugins

Progress: Bio-Formats
● Adapted ImageJ to use Bio-Formats

natively for reading file formats
● Files are opened as N-dimensional,

imglib-backed images

Progress: Automatic Plugins
● Plugin author uses Java Annotation to label

which dimensions a plugin can handle
● When image is loaded from File/Open IJ

checks dimensions and finds matching plugins
● IJ automatically runs unique matching plugin,

or displays dialog of choices if several match

@Dimensions(required="X,Y,Lifetime", optional="Channel")
public class SLIMPlugInAuto implements IAutoDisplayPlugin {
...
}

Progress: Quick Demo

Progress: OpenCL Plugin
● OpenCL: Run software on CPU and GPU cores

for fast processing-intensive analysis
● Web services: Invoke code from a remote

machine—cross-language, cross-platform
● Methodology for applying iterative speed-up to

existing Java code by translating to OpenCL

Progress

4) ImageJX: pursuing a separation of concerns
5) Declarative plugins for greater interoperability

– CellProfiler connectivity with ImageJ

6) Requirements: community feature requests
7) Software development methodology and tools

Progress: ImageJX
ImageWindow

ImageCanvas

JPanel or Panel

Frame, JFrame, or
JInternalFrame

● Existing plugin example:

Progress: Declarative Plugins

ImagePlus original = WindowManager.getCurrentImage();

GenericDialog gd = new GenericDialog("\"Tubeness\" Filter”);
gd.addNumericField("Sigma: ",
 (calibration==null) ? 1f : minimumSeparation, 4);
gd.addMessage("(The default value for sigma “ +
 "is the minimum voxel separation.)");
gd.addCheckbox("Use calibration information", calibration!=null);

gd.showDialog();
if (gd.wasCanceled()) return;

double sigma = gd.getNextNumber();
boolean useCalibration = gd.getNextBoolean();

TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);

Progress: Declarative Plugins

● Declarative plugin example:
@Parameter(label="Input image")
public ImagePlus original = null;

@Parameter(label="Sigma")
public double sigma = 1.0;

@Parameter(label="Use calibration")
public boolean useCalibration = false;

@Parameter(label="Output image", output=true)
public ImagePlus result = null;

public void run(String ignored) {
 if (original == null)
 original = WindowManager.getCurrentImage();
 TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);
 ...
}

Progress: CellProfiler

● CellProfiler is a tool for executing high-
throughout image analysis pipelines

● Achieves better interoperability with ImageJ
using the declarative plugin mechanism

Progress: Requirements

● Gathered feedback from the community
● Major areas of ImageJ

– Data model & image processing
– Visualization & user interface
– Input & output
– Segmentation & regions of interest
– Scripting & plugins

Progress: Development Tools

● Web site
● Unit test suite
● Continuous integration: Hudson
● Source control: Subversion & Git
● Project management: Maven & Trac

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“Your task is not to foresee
the future, but to enable it.”
—Antoine de Saint Exupéry

Future Directions

● Pursue Adaptation design for IJ 2.0
● N-dimensional image data model
● Investigate standards useful to ImageJ

– Rich client platform for user interface
– Modularity and interoperability: e.g., OSGi
– ROIs: e.g., JHotDraw

● Improve headless behavior
● Implement community requirements

Summary
● What Will ImageJ 2.0 Do for Me?

– Work with existing plugins and macros
– Work with new, exciting plugins and scripts
– Handle larger, more complex datasets
– Multidimensional visualization tools
– Easier to link with other software
– Easier plugin management

Acknowledgements
● Principal Investigators

– Kevin Eliceiri (LOCI), Rudolf Oldenbourg (MBL), Anne Carpenter (Broad)

● Developers
– Grant Harris, Barry DeZonia, Aivar Grislis, Rick Lentz (ImageJDev)

– Lee Kamentsky, Adam Fraser (CellProfiler)

● Collaborators
– Wayne Rasband (ImageJ)

– Pavel Tomancak, Johannes Schindelin, Albert Cardona (Fiji)

– Stephan Preibisch, Stephan Saalfeld (Imglib, Fiji)

– Mark Longair, Jean-Yves Tinevez (Fiji)

– Jason Swedlow, OMERO development team (OME)

Discussion
● Comments? Questions?
● Thoughts on what ImageJ 2.0 should be?
● Ideas from the community

Design Approaches

Design Approaches

1. Iterative
● Pro: No project forks

● Pro: Maintains compatibility
whenever possible

● Pro: Brings code “under test”

● Con: Heavily constrained by
the existing design

● Con: Development is slow

2. Greenfield
● Pro: Great flexibility

● Pro: Rapid development

● Pro: New code is “under test”

● Con: No compatibility

● Con: Forks the project

● Con: Loses legacy codebase's
“embedded knowledge”

Design Approaches

1. Iterative
● Pro: No project forks

● Pro: Maintains compatibility
whenever possible

● Pro: Brings code “under test”

● Con: Heavily constrained by
the existing design

● Con: Development is slow

2. Greenfield
● Pro: Great flexibility

● Pro: Rapid development

● Pro: New code is “under test”

● Con: No compatibility

● Con: Forks the project

● Con: Loses legacy codebase's
“embedded knowledge”

Design Approaches

1. Iterative 2. Greenfield

?

 Design Approaches

Approach #3: Delegation

● Good compatibility
● Good design flexibility
● But very disruptive of legacy work

Design Approaches

Approach #4: Adaptation

● Nearly perfect compatibility
● Smooth transition from legacy code

– Legacy work continues as long as needed

Design Approaches

Approach #4: Adaptation

● Some limits to interoperability
● Harnesses “embedded knowledge” of

legacy work without being constrained by it

Community Use Cases

Use Cases: VisBio

● Limited support for large datasets
– Image planes larger than 2GB
– Datasets larger than available RAM
– VirtualStacks cache only one plane at a time

● No support for 3D visualization
– Volume rendering
– Arbitrary slicing
– Realtime animation

● Also needs better support for ROIs

Use Cases: Slim Plotter

● No support for new dimensions
– Emission spectra
– Lifetime
– Polarization

● No support for processing inherent to viz
– Exponential curve fitting
– Spectral unmixing

Use Cases: Fiji

● Distributing plugins is external to ImageJ
● Keeping everything up to date is complex
● No standard for documenting plugins
● Not easy enough to prototype algorithms

– Plugins require too much boilerplate code
– No modular command framework for using

Macro Recorder with scripts
– Case logic for multiple pixel types is messy

● AWT dependencies preclude headless use

Use Cases: TrakEM2

● No support for displaying registered images
– No display mechanism for multiple image tiles
– No mechanism for transformation from data to

display (e.g., affine)
● Regions of interest are limited

– No vector-based ROIs (i.e., ROIs are bitmasks)
– Multiple ROIs are tacked on (ROI Manager)
– Confusing interplay between ROIs, masks &

thresholds with measurement tools

Use Cases: ROIs (Michael Doube)
● Recently I've been frustrated by ROI's being limited to

2D. With the emerging utility of the 3D viewer and the
proposal that ImageJ 2.0 handles N-dimensional data,
it makes sense that ROIs should keep up with this
development.

● In other words, in an N-dimensional image, one should
be able to specify and visualise an N-dimensional ROI.
 So you can have a 3D VOI, and a 4D VOI with time
limits (or even changing shape over time), or limit the
ROI to a channel (5D).

Use Cases: ROIs (J-Y Tinevez)
● I recently tried to code weird shapes as ROIs in ImageJ. They

were the results of a segmentation with constrained shapes.
Because I wanted to have something nice for the user, The
ROIs had to be mouse-interactive (resizable, moveable etc..). I
had a difficult time.

● Johannes proposed on the Fiji-devel list an abstract class
whose goal was to facilitate this interaction.

● But we still gave to comply to ImageJ ij.gui.Roi master class,
which is a concrete class in charge of drawing rectangle ROIs.
Inside this class, there is everything: the logic to draw it, to
interact with the user, with the image container, and the image
data. Any homemade ROI must inherit from this class, there is
no interface to implement.

Use Cases: ROIs (J-Y Tinevez)
● What I would like to propose here is to go for an interface

hierarchy for ROIs, that is well decoupled, and that would allow
the flexible design of new ROIs.

● We use ROIs for many purposes, for instance:
– user interaction

● draw a rectangle to crop an image
● measure intensity with a complex area
● add non-destructive annotations

– as input/output for plugins, for instance a result of segmentation

● From this you can see that they need to:
– know how to draw themselves as an overlay
– comply to some interface to be an input of some plugins
– know how to interact with mouse clicks and drag

Use Cases: µManager (N. Stuurman)

● 1. The Brightness/Contrast tool. Display of the histogram
cannot be reliably set to the dynamic range of the camera
(i.e., it always automatically goes back to the range of the
minimum and maximum pixel value in the image, which
can be extremely deceptive). No gamma correction. No
method to update histogram when the image changes. No
log display of the histogram. We ended up writing our
own, but things are still clunky because acquired images
(shown in a modified Image5D viewer) can only be
controlled by the ImageJ B&C tool.

Use Cases: µManager (N. Stuurman)

● 2. Lack of plugin API. We have been bitten a number of
times by internal changes in ImageJ breaking our code.
Wayne is very responsive, but this still causes confusion.

● 3. Lack of standard for Multi-Dimensional viewer. We
ended up using Image5D viewer, Hyperstacks came later.
My impression is that the UI of Image5D is easier for users
than the UI of Hyperstacks. In any case, we will be helped
by a standard viewer for multi-dimensional images that
integrates nicely with other ImageJ tools (like 3D viewers),
and that is extensible (we do need to add a number of
buttons that interface with image acquisition).

Use Cases: µManager (N. Stuurman)

● 4. MDI versus SDI. Not sure if this was on your list already
(all of you have certainly debated this in the past!), but it
seems that many people prefer the MDI model. On the
Mac, it is pretty weird that a single application has different
menus depending on which window you select (in our
case, ImageJ windows versus Micro-manager window).

Use Cases: Miscellaneous

● G. Landini: no color space support (e.g., HSB)
● F. Hessman: domain coordinate systems

– S&S are planning support within imglib
– ImageJX consensus is to punt on this for now
– Need to find a group with this use case first

● Legacy AWT interface limits use of Swing
– ImageJ cannot use different L&Fs
– AWT is missing features (JSpinner, JInternalPane)
– Swing development is active, unlike legacy AWT

Use Cases: Compatibility

● Advantage of ImageJ: wealth of existing code
● Problem: ImageJ2 will break that code
● Examples:

– ImageProcessor.getPixels()
– All non-private, non-final fields
– Subclasses created to sidestep API issues
– Even private fields—setAccessible(true)

Use Cases: Interoperability

● FARSIGHT: ITK-driven segmentation routines
are difficult to use from Java

● CellProfiler: How can scientists combine
workflows between CellProfiler and ImageJ?

● OMERO: Database-backed images are kludgy
● Others: KNIME, Endrov, BioImageXD, PSLID...

Use Cases: Performance

● Traditional tradeoff between space & time
● Tradeoff between generality & performance

– Moving toward generality requires that we
remain aware of performance issues

– But flexibility and usability remain paramount
● OpenCL is promising but negates many of

imglib's gains in generality

Components of ImageJ2

● Relevant technologies
1)Data model – imglib library
2)Display – Java AWT, JAI, Swing, RCP
3)Input/output – Bio-Formats architecture
4)Regions of interest – Java AWT, JHotDraw, OME-XML
5)Scripting & plugins – Java 6 Scripting Framework

● More exploration of some technologies needed

ImageJX: Separation of Concerns

Decouple GUI dependencies
● Alternative GUI configurations (e.g., Swing

SDI/MDI)
● Headless operation
● Incorporation into application framework
● Easing use as a library

GUI Decoupling

I m a g e W i n d o w

I m a g e C a n v a s

Dynamic Plugin Discovery

● Declarative Registration using Annotations
– Menus, etc., are built dynamically from

plugin declarations
● Classes do not neet to be loading

– Uses ‘compile-time caching’ (SezPoz)
● ‘Automatic Plugins’

– I/O (Bio-Formats reader)
– Display—invoke a plugin in response to a

particular kind of data being opened

Dynamic Plugin Discovery

Toward Modularity & Extensibility

● Use interfaces, abstract classes, factories
– Replaceable implementations
– Enables dynamic assembly

● @ServiceProvider (e.g. SavePrefs)
● CentralLookup
● ‘Injectable Singletons’
● EventBus
● Context / Selection management

 1

ImageJDev

Curtis Rueden, LOCI
Grant Harris, MBL at Woods Hole

Thanks for the opportunity to speak to you all, and to
Andreas for inviting me. My name is Curtis Rueden
of the Laboratory for Optical and Computational
Instrumentation. Grant Harris of the Marine
Biological Laboratory at Woods Hole unfortunately
could not be here in person due to a personal
injury, but is listening in via Skype, and will be
available during the round table discussion
afterwards.

 2

Introduction

● ImageJDev: an NIH-funded project to pro-
duce the next generation of ImageJ

● Partnership between several institutions:
– LOCI at UW-Madison
– MBL at Woods Hole
– Broad Institute of MIT and Harvard
– Fiji group (MPI-CBG, Uni/ETH Zurich, etc.)

See also: imagejdev.org/collaborators

The ImageJDev project seeks to create the next generation
version of ImageJ. We'll describe what we mean by that
shortly, but first some background on who we are.

ImageJDev is a collaboration between several institutions: 1)
LOCI, which is a biophotonics lab in Madison, Wisconsin,
USA; 2) MBL at Woods Hole in Massachusetts, an
international center for research, education, and training in
biology, biomedicine and ecology; 3) the Broad Institute in
Boston, a cross-disciplinary group researching systematic
approaches to biological sciences; 4) the Fiji group,
consisting of several different institutions; and 5) Wayne
Rasband, the author of ImageJ.

There are four full-time developers at LOCI including myself,
Grant Harris at Woods Hole, two developers at the Broad
Institute focusing on CellProfiler integration, and several
other contributors and advisors including Wayne Rasband,
the Fiji developers and members of the ImageJX mailing list.

See the web site for a complete list of collaborators.

 3

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

This talk will describe the ImageJDev effort, including
our vision and goals for ImageJ 2.0; proposed
design of the software; progress so far; and what's
coming, both over the next year and longer term.

Please feel free to interrupt with simple questions
during the presentation. For extended discussion of
more complex issues, please make a note and
bring it up during the round table discussion.

 4

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“Don't be pushed by your
problems. Be led by your
dreams.”
—Anonymous

It is important to spend some time discussing the
vision of the project, and the rationale behind it.

 5

Vision: Guiding Principles

● Preserve backwards compatibility
● Maintain good performance
● Support N-dimensional imaging
● Use common input and output for data
● Minimize complexity

– Introduce dependencies only when
benefits outweigh disadvantages

● Employ modern software development practices

First, let's define some guiding principles, tenets we
will follow as we

As development continues, our specific approach
may change, but there are rules we won't break

 6

Vision: The Dream

● What is ImageJ's greatest strength?

Now that we have some principles to ground us, let's
take a moment to ponder: what is ImageJ's greatest
strength?

Of course, there are many possible answers—its
simplicity, fast performance, large community of
users—but we would say its greatest strength is its
extensibility.

 7

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

You can extend ImageJ's ability to perform image
processing by creating plugins, macros and scripts.
It's a powerful technique, but also easy to do—and
surely one of the primary reasons for ImageJ's
success.

Combined with the fact that the software is open
source, this extensibility has enabled ImageJ to
become a community-driven phenomenon.

 8

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?

With that in mind, is there a way we can take it one
step further? Can we take this potential for
extensibility and make it even better, without
compromising ImageJ's many other strengths?

 9

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?
– Plugins as modular “building blocks”

Well, if it were not only easy to write a plugin, but also
easy for others to reuse your plugin... we would
have an ever-increasing collection of “building
blocks” to choose from—a collaborative, modular
design.

 10

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?
– Plugins as modular “building blocks”

● What does modularity gain us?

Such a modular system provides building blocks for
use not only within ImageJ itself, but also from
other software systems.

 11

Vision: The Dream

● What is ImageJ's greatest strength?
– It's extensible by writing plugins

● How can we expand on this potential?
– Plugins as modular “building blocks”

● What does modularity gain us?
– Modularity facilitates interoperability

As such, modular components provide the means for
other software to interoperate with ImageJ, since
each module can be used individually, overridden
or swapped out, like parts under the hood of a car.

 12

Vision: The Need

● Extensibility
● Modularity
● Interoperability

To summarize, we can pursue our dream of
strengthening ImageJ by improving ImageJ's
extensibility, its modularity and its interoperability.
Let's briefly examine what each of these terms
means.

 13

Vision: The Need

● Extensibility
● Modularity
● Interoperability

A system design principle
where the implementation
takes into consideration
future growth. It is a sys-
temic measure of the abil-
ity to extend a system
and the level of effort re-
quired to implement the
extension.
—“Extensibility” on Wikipedia

First of all, better extensibility will make it easier than
ever to write plugins and scripts, build on each
others' work, and expand ImageJ's capabilities in
all sorts of ways.

As the old programming proverb goes, the system
should “make simple things easy, and difficult
things possible.”

 14

Vision: The Need

● Extensibility
● Modularity
● Interoperability

The extent to which soft-
ware is composed of
separate, interchange-
able components, called
modules, which represent
a separation of concerns,
and improve maintainabil-
ity by enforcing logical
boundaries between
components.
—“Modularity” on Wikipedia

Secondly, a modular design makes ImageJ easier to
understand by dividing what the program can do
into clear component parts. And it will make both
extensibility and interoperability much more
achievable.

First and foremost, ImageJ must provide the tools for
building these modules—a “system for extending
the system,” if you will.

Beyond that, it should provide the core modules for
scientific image processing. As software developers
create additional modules of common utility, they
should become part of the standard ImageJ
distribution.

 15

Vision: The Need

● Extensibility
● Modularity
● Interoperability

The capability of different
programs to exchange
data via a common set of
exchange formats, to
read and write the same
file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
standardization during the
design of a program.
—“Interoperability” on Wikipedia

Lastly and perhaps most importantly, ImageJ must
interoperate with other software in order to be
useful.

At LOCI, interoperability is our mantra. It is a central
goal of everything we do, and in a broader sense, a
goal of science as a whole. For those of you
familiar with the Bio-Formats library and the Open
Microscopy Environment consortium, these tools
were designed at every level for use with other
software.

We want ImageJ to be similarly flexible.

 16

Vision: The Need

● Extensibility
● Modularity
● Interoperability

The capability of different
programs to exchange
data via a common set of
exchange formats, to
read and write the same
file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
standardization during the
design of a program.
—“Interoperability” on Wikipedia

Note the second half of this definition, taken from
Wikipedia: “The lack of interoperability can be a
consequence of a lack of attention to
standardization.”

The essence of interoperability is the use of
standards: data structures or communication
protocols common to multiple programs. Hence, to
achieve true interoperability, we must leverage
existing approaches whenever possible—and
define our own when nothing suitable already
exists.

Of course, such tools and standards must be chosen
selectively and cautiously. But there is great benefit
to doing so.

 17

Vision: The Challenge

● How do we maintain compatibility?
– Will plugins and macros still work?
– Do other programs work with ImageJ 2.0?

That said, there are still challenges.

Of particular note is this: to improve a program, we
must change it. Unfortunately, changing code is
inherently dangerous, because it is extremely
fragile; changing a single character can transform a
working program into non-functional junk—or
worse, have subtle, far-reaching consequences on
ostensibly unrelated parts of the program.

Hence, one primary challenge is maintaining
compatibility with the wealth of existing plugins,
macros, scripts and other software.

Fortunately, there are solutions.

 18

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?

So, we have identified a need for interoperability and
extensibility.

 19

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?
● Use standards

And we've noted that using existing standards
provides a path toward achieving those goals.

However, while the use of standards contributes
much toward good software design, it often ignores
the issue of good software implementation
practices...

 20

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?
● Use standards

2. Implementation: how to preserve
compatibility?

...and doesn't help answer our second question: how
do we maintain compatibility with existing software?

Hence, standards may seem somewhat analogous to
a building's blueprint: they describe the final
product, but not the physical process of
construction.

However, it turns out there are standards in the
community for software development processes as
well. And just as we benefit from utilizing standard
software libraries and formats, we can also take
advantage of these standard processes.

 21

Vision: The Solution

● Two primary questions:
1. Planning: how to achieve interoperability,

modularity and extensibility?
● Use standards

2. Implementation: how to preserve
compatibility?

● Small, “safe” code changes that
preserve existing behavior

Specifically, good software development consists of a
methodology that stresses small code changes,
with verification at every step that the program's
behavior is maintained.

 22

Vision: The Process

● Unit tests
– A “safety net” for preserving behavior
– The act of creating them

encourages modular design
● Continuous integration

– An “early warning system”
● Project management tools, etc....

Further, by creating a collection of automated
routines called unit tests that verify each existing
individual program function remains unchanged, we
can have a safety net for determining whether a
given change has harmed compatibility.

Going a step further, we can employ a continuous
integration system to automatically run these tests
every time someone makes a change—and if any
tests fail, email the offender about it. This catches
any problems introduced as early as possible.

Such details on software development processes
have filled many books, so I'll stop there, but
hopefully you get the idea that standards help here
as well.

 23

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“Goals are dreams with
deadlines.”
—Diana Scharf Hunt

So, now that you know why we are doing this, we'll
briefly describe what we are funded to do. We have
defined three major project aims, related to our
vision for ImageJ2.

 24

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aim 1 is focused on reengineering ImageJ to target
the goals we just described. In essence, Aim 1A is
about modularity, Aim 1B targets extensibility, and
Aim 1C improves interoperability.

 25

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aim 1A focuses on separating ImageJ's central processing
logic from its user interface. We want it to be possible to
execute plugins, macros and other processing tasks
without requiring any user interaction or displaying any
windows. This idea is known as “separation of concerns”
and is very related to the concept of modularity we just
described.

By respecting this separation of concerns, many new things
become possible. It becomes easier to run ImageJ on a
cluster, or as a client-server application. It eliminates the
dependency on any particular user interface, so for
example the ImageJ2 interface could use Swing or SWT
instead of AWT, enabling many more standard interface
features such as additional widgets, multiple document
interface layouts, and window docking. And it becomes
much easier to develop a version of ImageJ for mobile
devices or the web.

 26

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aim 1B is focused on improving ImageJ's plugin
mechanism. As we discussed earlier, ImageJ's
extensibility is one of its key strengths, and by
improving how plugins work, we make ImageJ
more powerful and easier to use for science.

We'll show some examples of these improvements
later, including declarative plugins, display plugins,
and a metadata-rich plugin discovery mechanism.

 27

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aim 1C refers to the addition of several key features
to ImageJ's processing capabilities: datasets
beyond five dimensions, very high resolution image
planes, data stored remotely, and a richer set of
supported metadata.

Our main approach for accomplishing this sub-aim is
to use an imaging library called imglib, developed
at MPI-CBG in Dresden. Imglib is currently part of
Fiji, but is only partially compatible with ImageJ.

Later, we'll show our progress integrating imglib with
ImageJ to enable true N-dimensionality, more types
of images, and flexible sources of data. We'll also
show an example of higher-dimensional data: a
plugin for working with combined spectral lifetime
images.

 28

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Aim 2 seeks to connect ImageJ with other existing imaging
tools. This work will help development proceed in a
practical direction with an emphasis on interoperability.
By doing this, we will ensure that the improvements from
Aim 1 are not being done in a vacuum, but rather with
specific use cases in mind.

While Aim 2 focuses on two specific tools, CellProfiler and
VisBio, our goal is really to integrate the various use
cases suggested by the community. CellProfiler and
VisBio are highlighted in the proposal because they
represent two opposite ends of the interoperability
spectrum: CellProfiler is a standalone tool that would
benefit from a loose two-way communication style of
integration, whereas VisBio is seeks to do many of the
same things ImageJ can, but in N dimensions with better
separation of concerns, and thus is a natural fit as a suite
of ImageJ plugins harnessing the new architecture.

 29

Aims

1. Improve ImageJ’s core architecture
a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImageJ community resources

See also: imagejdev.org/proposal

Lastly, Aim 3 is a fairly broad set of goals intended to
foster the idea of community-driven development,
including strong web-based resources for both
users and programmers. We want to establish a
central community resource for accessing software
releases, plugins and scripts, source code,
documentation, and more.

This aim also specifically targets compatibility with
the wealth of existing community-created plugins,
macros and other code. This goal will ensure that
ImageJ2 is not a reboot, but rather a continuation of
ImageJ's development.

For more details on these aims, including the full
technical proposal, see the ImageJDev web site.

 30

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“I haven't failed, I've found
10,000 ways that don't
work.”
—Thomas Edison

Next, we will cover how we plan to accomplish our
goals. There won't be time to fully explore the
specifics, but we will briefly summarize our planned
approach.

 31

Design

● Considered several design approaches
– Iterative (current strategy)
– Greenfield (new application)
– Delegation (change IJ1's internals)
– Adaptation (leave IJ1 alone)

● Adaptation: IJ2 includes IJ1 as a library
● IJ1 and IJ2 grow and evolve together
● More slides during roundtable if interest

For the last few months, we have struggled to come up with
a design that accomplishes all the goals outlined earlier,
while maintaining our guiding principles. We knew we
would need to restructure things a bit, and move away
from the current ImageJ development model, partly due
to the scope of what we want to accomplish, and partly
because there is now a larger core development team.

Based on feedback from all involved, we settled on an
approach we call Adaptation, where the new ImageJ2
program includes ImageJ1 as a library, communicating
with it as necessary to execute plugins and macros
faithfully. This approach has seen some success in
industry—for example, Adobe overhauled their Flash
virtual machine in version 9, but continued bundling the
older VM as well for compatibility.

The Adaptation approach will allow ImageJ1 and ImageJ2
to both continue developing, and allow users to gradually
migrate to ImageJ2 over time.

 32

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“...”
—...

Now we would like to share progress so far across
several areas.

All of this work is under heavy development, and it
will be several more months before most of it is
ready for general use. Our goal is to have a beta of
ImageJ2 available some time in the spring.

 33

Progress

1) Imglib: an N-dimensional image data model
– Bio-Formats: reading data

2) Automatic plugins for extensible visualization
– Spectral lifetime image data plugin

3) OpenCL-based iterative deconvolution

First, we have begun integrating the imglib library with
ImageJ, and have a file reader module that uses Bio-
Formats to import data as imglib images.

Second, we have a simple prototype of a “display plugin”
mechanism, which automatically executes a compatible
visualization plugin when an image is first opened, based
on the image's dimensional structure—and we wrote a
display plugin for visualization of lifetime images.

Third, we did some work translating Bob Dougherty's 3D
iterative deconvolution plugin to use OpenCL, which
enables GPU-accelerated processing to achieve a six-
fold speed increase.

Imglib is a library for N-dimensional image processing in Java,
developed at MPI-CBG in Dresden by Stephan Saalfeld and
Stephan Preibisch.

We have added limited support for imglib-based image data to
ImageJ. This enables ImageJ to work with new pixel types such
as 32-bit integer data, but more importantly to take advantage of
imglib's flexible container approach. With imglib, your data could
be stored in an array in memory—which is how ImageJ currently
works—or alternatively could be access your images from a
remote database or other source.

Imglib also allows you to write a plugin once that works with all
pixel types, rather than needing a special case for each one.

Our current approach for using imglib within ImageJ required
changing the ImageJ1 code, but since settling on the
Adaptation-based design, we plan to rework this to make it more
of an add-on from the ImageJ2 side, rather than altering
ImageJ1.

If you want to learn more about Imglib, I encourage you to attend
Stephan Preibisch's imglib workshop tomorrow.

 34

Progress: Imglib
● Added data types backed by Imglib library

– Currently supports nine pixel types:
● Signed and unsigned integer, floating point
● Bit depths: 8, 16, 32, and 64 bit

● Many possible storage strategies
● Type-independent plugins

 35

Progress: Bio-Formats
● Adapted ImageJ to use Bio-Formats

natively for reading file formats
● Files are opened as N-dimensional,

imglib-backed images

Bio-Formats is a library developed at LOCI for
reading and writing file formats. Fiji currently comes
bundled with the Bio-Formats plugins, but we would
like to use Bio-Formats as a model for ImageJ's
input/output routines.

We wrote a module for loading an imglib image from
a file on disk using Bio-Formats. Together with the
imglib support, ImageJ2 can natively use Bio-
Formats to open image data, preserving the N-
dimensional structure.

I'll show this in action in shortly.

36

36

Progress: Automatic Plugins
● Plugin author uses Java Annotation to label

which dimensions a plugin can handle
● When image is loaded from File/Open IJ

checks dimensions and finds matching plugins
● IJ automatically runs unique matching plugin,

or displays dialog of choices if several match

@Dimensions(required="X,Y,Lifetime", optional="Channel")
public class SLIMPlugInAuto implements IAutoDisplayPlugin {
...
}

Due to the variety of possible in image data these
days, we are interested in ImageJ providing context-
sensitive visualization, depending on the type of
image.

explain example annotation
explain dynamic plugin discovery

We have developed an example plugin for spectral
lifetime data, which I'll show now.

37

37

Progress: Quick Demo

Execute ./ij.sh in Terminal

File/Open test_greys.lif
Show new type on Image/Type menu
Move to later timepoint
Do “make composite” on test_greys.lif

File/Open image.zvi
Do Plugins/Filters/Floyd-Steinberg on image.zvi
Do Edit/Undo to undo it

File/Open the SDT file, explain SLIM Plugin a little

Quit ImageJ

38

38

Progress: OpenCL Plugin
● OpenCL: Run software on CPU and GPU cores

for fast processing-intensive analysis
● Web services: Invoke code from a remote

machine—cross-language, cross-platform
● Methodology for applying iterative speed-up to

existing Java code by translating to OpenCL

explain the three points

Unfortunately, no demo...

 39

Progress

4) ImageJX: pursuing a separation of concerns
5) Declarative plugins for greater interoperability

– CellProfiler connectivity with ImageJ

6) Requirements: community feature requests
7) Software development methodology and tools

A few other areas of progress...

We have been working on a refactored version of ImageJ
codenamed “ImageJX” with a more flexible user
interface...

I'll cover use of an updated “declarative” plugin
mechanism, which has proved useful for integrating
other applications such as CellProfiler with
ImageJ...

I'll briefly summarize the categories of feedback we
received from the ImageJ community regarding
what they would like to see in ImageJ 2.0...

And I'll explain some of the tools we've adopted to
foster effective development practices.

 40

Progress: ImageJX
ImageWindow

ImageCanvas

JPanel or Panel

Frame, JFrame, or
JInternalFrame

ImageJX is an attempt to rework the core of ImageJ
to have “GUI independence”—a better distinction
between the parts of the program that do the actual
image processing, and other parts that display user
interface on screen.

We have code in development that produced the
interface you see here, using a Swing MDI model
rather than ImageJ's usual AWT interface. The goal
is not necessarily to “port ImageJ to Swing,” but
rather to show that an ImageJ user interface could
take many forms. This work paves the way for
ImageJ in many other contexts, from command line
or headless operation mode, to a web-based
interface, to use on mobile devices.

 41

● Existing plugin example:

Progress: Declarative Plugins

ImagePlus original = WindowManager.getCurrentImage();

GenericDialog gd = new GenericDialog("\"Tubeness\" Filter”);
gd.addNumericField("Sigma: ",
 (calibration==null) ? 1f : minimumSeparation, 4);
gd.addMessage("(The default value for sigma “ +
 "is the minimum voxel separation.)");
gd.addCheckbox("Use calibration information", calibration!=null);

gd.showDialog();
if (gd.wasCanceled()) return;

double sigma = gd.getNextNumber();
boolean useCalibration = gd.getNextBoolean();

TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);

Johannes Schindelin of the Fiji project came up with
a clever way to make plugins simpler, while also
allowing them to be run in more contexts. This work
goes hand in hand with the ImageJX idea of good
separation of concerns—the plugin processing logic
should not need to invoke any particular user
interface components, but rather merely perform
operations on data.

Here is an example to illustrate. *explain*

 42

Progress: Declarative Plugins

● Declarative plugin example:
@Parameter(label="Input image")
public ImagePlus original = null;

@Parameter(label="Sigma")
public double sigma = 1.0;

@Parameter(label="Use calibration")
public boolean useCalibration = false;

@Parameter(label="Output image", output=true)
public ImagePlus result = null;

public void run(String ignored) {
 if (original == null)
 original = WindowManager.getCurrentImage();
 TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);
 ...
}

continue explanation

It's a “declarative” pluginbecause it clearly declares
input and output parameters, with useful metadata.

No more need to invoke GUI-centric concepts such
as GenericDialog—less boilerplate code.

Enables greater interoperability. In interactive mode,
automatically constructs and displays input dialog.
But other modes are also possible.

The annotations standardize the mechanism for
declaring plugin inputs and outputs, allowing the
plugin to be used by any compatible imaging
program, not just ImageJ.

 43

Progress: CellProfiler

● CellProfiler is a tool for executing high-
throughout image analysis pipelines

● Achieves better interoperability with ImageJ
using the declarative plugin mechanism

CellProfiler is a program developed at the Broad
Institute, for performing automated analysis of large
numbers of images.

The user defines a pipeline of operations to perform,
then repeats that pipeline across many datasets.

CellProfiler recently added the ability to call an
ImageJ plugin as part of a pipeline. However, the
integration required ImageJ to be displayed
onscreen, which is a problem when executing
pipelines on a cluster with no user interface.

The CellProfiler team was able to improve their
support for ImageJ plugins by utilizing the new
declarative plugins mechanism.

 44

Here we see CellProfiler interacting with IJ1's
standard plugin mechanism. This pipeline calls the
Tubeness plugin, written by Mark Longair, Stephan
Preibisch and Johannes Schindelin, which filters an
image stack to produce a score for how "tube-like"
each point in the image is.

Note that the ImageJ windows must be physically
shown on-screen, in addition to the CellProfiler
interface's windows.

Further, the macro execution shown above is error-
prone and can only be accomplished by a user who
is very familiar with both applications.

 45

Here we see CellProfiler utilizing the new declarative
mechanism. Lee Kamentsky translated the
Tubeness plugin into a declarative plugin, which
enables CellProfiler to more easily integrate with its
own user interface. The IJ2 plugin tells CellProfiler
the inputs and outputs, as well as helpful text to
display next to each field.

Notice that no ImageJ windows need to appear. The
interoperability is also more robust; the Broad
Institute is already actively using ImageJ plugins
with CellProfiler on high-throughput screens on
their cluster.

 46

Progress: Requirements

● Gathered feedback from the community
● Major areas of ImageJ

– Data model & image processing
– Visualization & user interface
– Input & output
– Segmentation & regions of interest
– Scripting & plugins

One of the first things we did was to solicit feedback
from community regarding ImageJ 2.0's needed
features, and we got a pretty great response. There
isn't time to list it all here, but we found that nearly
everything mentioned fell into one of the above five
categories.

I have quite a few slides detailing individual items,
which are available for reference during the round
table discussion as needed.

 47

Progress: Development Tools

● Web site
● Unit test suite
● Continuous integration: Hudson
● Source control: Subversion & Git
● Project management: Maven & Trac

As I mentioned earlier, we want to have an effective
development process. We are using several
standard tools and methods to assist with this goal.

 48

This is our website for the ImageJDev project, with
documentation and links to the other tools.

It is set up using the Drupal content management
system, so that we can easily extend the
functionality, and so that multiple users can
collaboratively edit the site.

We still have a lot more work to do getting more
content on the site, but it is a start.

 49

We wrote some unit tests to ensure that existing
ImageJ behavior is preserved when code is
changed. We currently have test cases for around
50 core ImageJ classes, though more are still
needed for full coverage.

Here we see the Eclipse development environment
executing our many unit tests: 1,000 robot monkeys
each repeating a different little task. The green
checkmarks mean the tests are passing.

 50

Hudson, our continuous integration system, makes it
less likely for us to break the program without
noticing for a long period of time by automatically
performing builds, running tests, and emailing us if
something goes wrong.

Here, Hudson reports that all is well with the latest
code—though the little cloud next to ImageJ means
that there was a failure one of the last five times. If
the build or tests are broken, the blue circle turns
red, and the weather gets stormy.

 51

The web-based Trac project management system
makes it easier to organize everyone's pending
tasks, and keep track of the problems people have
reported with ImageJ.

This is a view of the Trac showing a history of activity
over the past 30 days. A Changeset means that
somebody made a change to the code, while a
Ticket event indicates progress or discussion on a
bug or task in the bug tracking system.

 52

The Maven project management and build tool helps
to keep dependencies organized. While I have
touted modularity as a good thing, as you develop
more and more modules that depend on one
another, it helps to have a way to visualize these
relationships. Here we see a graph of project
dependencies, generated in Eclipse using the
Maven plugin, for imglib, which currently consists of
four modules.

describe briefly

 53

One great feature of Maven is the ability to generate
a website for your project with various reports and
code analysis. Here we see a Maven-generated
site report that summarizes the dependencies of
our ImageJ 2.0 development code.

Maven integrates very nicely with a large number of
powerful project management tools, such as
automated bug detection and code coverage
analysis. And as new tools are developed, it's likely
that the software development community will
integrate them with Maven as well, making it easier
for us to take advantage of them.

 54

Outline

● Vision
● Aims
● Design
● Progress
● Future Directions

“Your task is not to foresee
the future, but to enable it.”
—Antoine de Saint Exupéry

Hopefully our vision and aims gave you a pretty good
idea of our future directions for the project. But we'll
briefly summarize what to expect in the next year
and beyond.

 55

Future Directions

● Pursue Adaptation design for IJ 2.0
● N-dimensional image data model
● Investigate standards useful to ImageJ

– Rich client platform for user interface
– Modularity and interoperability: e.g., OSGi
– ROIs: e.g., JHotDraw

● Improve headless behavior
● Implement community requirements

Our primary goal is to create a version of ImageJ 2 that can
communicate with the current ImageJ 1 application,
operating as faithfully as possible to preserve backwards
compatibility and keep existing plugins and macros
working.

For the 2.0 version, we will pursue an interface-driven,
modular design with good separation of concerns, based
on the current ImageJ 1 codebase, but without being
overly constrained by it. In general, if we need to change
something, the Adaptation design gives us the ability to
do so without breaking backward compatibility.

We will do our best to apply industry standard software
engineering tools and practices, so that ImageJ
development can be driven not just by the ImageJDev
project, but by the community as a whole.

 56

Summary
● What Will ImageJ 2.0 Do for Me?

– Work with existing plugins and macros
– Work with new, exciting plugins and scripts
– Handle larger, more complex datasets
– Multidimensional visualization tools
– Easier to link with other software
– Easier plugin management

To conclude, ImageJ 2 will work with existing plugins
and macros, while enabling the use of new kinds of
plugins and scripts as well. In particular, it will
support images that are larger and more complex,
with additional dimensions that can be visualized in
a variety of ways. For developers, it will be easier to
invoke ImageJ from other software—and for users
it will be easier to manage which plugins you have
installed, and keep them up to date.

 57

Acknowledgements
● Principal Investigators

– Kevin Eliceiri (LOCI), Rudolf Oldenbourg (MBL), Anne Carpenter (Broad)

● Developers
– Grant Harris, Barry DeZonia, Aivar Grislis, Rick Lentz (ImageJDev)

– Lee Kamentsky, Adam Fraser (CellProfiler)

● Collaborators
– Wayne Rasband (ImageJ)

– Pavel Tomancak, Johannes Schindelin, Albert Cardona (Fiji)

– Stephan Preibisch, Stephan Saalfeld (Imglib, Fiji)

– Mark Longair, Jean-Yves Tinevez (Fiji)

– Jason Swedlow, OMERO development team (OME)

I would like to thank everyone involved in the project,
including our collaborators, Mark Longair for his
tubeness plugin, and Jean-Yves Tinevez

Also thank the other Fiji developers, including Mark
Longair (tubeness) and Jean-Yves Tinevez (imglib)

Also thank NIH and the stimulus funds

 58

Discussion
● Comments? Questions?
● Thoughts on what ImageJ 2.0 should be?
● Ideas from the community

 59

Design Approaches

 60

Design Approaches

1. Iterative
● Pro: No project forks
● Pro: Maintains compatibility

whenever possible

● Pro: Brings code “under test”

● Con: Heavily constrained by
the existing design

● Con: Development is slow

2. Greenfield
● Pro: Great flexibility
● Pro: Rapid development
● Pro: New code is “under test”

● Con: No compatibility

● Con: Forks the project
● Con: Loses legacy codebase's

“embedded knowledge”

Let's start by talking about a purely evolutionary
approach to software development. As features are
needed, they are added to ImageJ one by one.
Eventually, when we meet our goals, we declare a
“2.0” release of ImageJ, and continue from there.

This approach is how ImageJ has been developed for
the past decade, and it has a lot going for it—in
particular, with care it is possible to maintain
compatibility with existing plugins indefinitely.

However, the compatibility comes at an increasingly
steep cost. As ideas are developed and improved,
the prior paradigms must be kept in place, and the
code becomes increasingly hard to understand.
Worse, some paradigms end up being very difficult
to shoehorn into the existing code structure.

 61

Design Approaches

1. Iterative
● Pro: No project forks
● Pro: Maintains compatibility

whenever possible

● Pro: Brings code “under test”

● Con: Heavily constrained by
the existing design

● Con: Development is slow

2. Greenfield
● Pro: Great flexibility
● Pro: Rapid development
● Pro: New code is “under test”

● Con: No compatibility

● Con: Forks the project
● Con: Loses legacy codebase's

“embedded knowledge”

Contrast that with a naïve “greenfield” design, where we
redesign the software from the ground up. In a very real
sense, the new application is not a version upgrade, but
rather a brand new program.

This approach is very common when developers feel they
are hitting the ceiling on what is feasible with the existing
“legacy” software. Of particular advantage is the fact that
there are very few constraints on the new design.

However, a greenfield design inherently has zero
compatibility with the legacy application—existing code
will not work with the new application unless it is
reworked to use the updated paradigms.

Lastly, while the new design may apply conceptual lessons
learned from the legacy application, it loses the
“embedded knowledge” present in the existing codebase,
discovered through years of effort, blood, sweat and
tears.

 62

Design Approaches

1. Iterative 2. Greenfield

?

Both approaches have advantages, but also serious
difficulties—is there a combined approach that
achieves the best aspects of both?

 63

 Design Approaches

Approach #3: Delegation

● Good compatibility
● Good design flexibility
● But very disruptive of legacy work

One possibility we seriously considered is a delegation
model. With this approach, we create a new IJ2
application, and then transform IJ1 over time to rely on
IJ2 routines for its core functionality.

In many ways this scheme seems promising, because it
keeps compatibility in mind, while allowing substantial
freedom in the new design. In some cases, the IJ1
application could even gain access to new IJ2 features
“for free.”

Unfortunately, in some ways the new design is still
inherently constrained by the needs of the legacy
application. That is, IJ2 must be capable of doing
everything IJ1 can do, in a compatible paradigm.

Lastly, as more and more IJ1 code is refactored into
delegation calls to IJ2, it becomes increasingly necessary
to understand the IJ2 design as well, making continued
IJ1 development difficult.

 64

Design Approaches

Approach #4: Adaptation

● Nearly perfect compatibility
● Smooth transition from legacy code

– Legacy work continues as long as needed

These issues lead us to propose a different design based
on adaptation. The trick is to create a compatibility layer,
or “adapter,” that converts data between the IJ1 and IJ2
data representations, transforming our problem of
compatibility into one of interoperability.

In some ways this approach is the inverse of the delegation
model: instead of forcing IJ1 to depend on IJ2, it's the
other way around. Specifically, we enable IJ2 to use IJ1
as a library to execute existing plugins, transforming the
data between representations as needed. (In many cases
the transformation will be very efficient, as image data
structures can share references to primitive arrays.)

Another major advantage of this approach is that IJ1
development can continue until IJ2 has reached full
maturity. During the transition, users needing maximum
stability can continue using IJ1, while those desiring new
features can adopt IJ2.

 65

Design Approaches

Approach #4: Adaptation

● Some limits to interoperability
● Harnesses “embedded knowledge” of

legacy work without being constrained by it

It is worth pointing out that this design does have some
minor interoperability limitations. Specifically, new IJ2
data structures may not translate perfectly to the old IJ1
data model. For example, if IJ2 supports a new kind of
ROI, or a new pixel type, it might not be expressible in
terms IJ1 can understand.

Fortunately, in such situations, there are unlikely to be
existing IJ1 plugins that would benefit greatly from the
new structures—and if there are, they can be updated to
run natively in IJ2.

Lastly, we can continue to benefit from the last decade of
effort by branching the ImageJ 2.0 codebase from IJ1,
rather than starting from scratch with a purely greenfield
design. Because IJ2 is not directly responsible for
compatibility with IJ1, we are free to change the design
as needed to encompass new features and ideas.

 66

This diagram illustrates how the adaptation design
would allow IJ2 to interoperate with IJ1 as a library.

Existing IJ1 plugins are discovered and listed in the IJ2
application's menu, as normal. When one of them is
invoked, the input data is transformed via the adapter
into an IJ1-based representation such as an
ImagePlus object. If an IJ2 plugin is later invoked on
the result, it is transformed back into an IJ2-based
representation such as an imglib image object.

Although this description is a simplification of the
procedure needed, hopefully it illustrates the
essential principle.

 67

Community Use Cases

 68

Use Cases: VisBio

● Limited support for large datasets
– Image planes larger than 2GB
– Datasets larger than available RAM
– VirtualStacks cache only one plane at a time

● No support for 3D visualization
– Volume rendering
– Arbitrary slicing
– Realtime animation

● Also needs better support for ROIs

 69

Use Cases: Slim Plotter

● No support for new dimensions
– Emission spectra
– Lifetime
– Polarization

● No support for processing inherent to viz
– Exponential curve fitting
– Spectral unmixing

 70

Use Cases: Fiji

● Distributing plugins is external to ImageJ
● Keeping everything up to date is complex
● No standard for documenting plugins
● Not easy enough to prototype algorithms

– Plugins require too much boilerplate code
– No modular command framework for using

Macro Recorder with scripts
– Case logic for multiple pixel types is messy

● AWT dependencies preclude headless use

 71

Use Cases: TrakEM2

● No support for displaying registered images
– No display mechanism for multiple image tiles
– No mechanism for transformation from data to

display (e.g., affine)
● Regions of interest are limited

– No vector-based ROIs (i.e., ROIs are bitmasks)
– Multiple ROIs are tacked on (ROI Manager)
– Confusing interplay between ROIs, masks &

thresholds with measurement tools

 72

Use Cases: ROIs (Michael Doube)
● Recently I've been frustrated by ROI's being limited to

2D. With the emerging utility of the 3D viewer and the
proposal that ImageJ 2.0 handles N-dimensional data,
it makes sense that ROIs should keep up with this
development.

● In other words, in an N-dimensional image, one should
be able to specify and visualise an N-dimensional ROI.
 So you can have a 3D VOI, and a 4D VOI with time
limits (or even changing shape over time), or limit the
ROI to a channel (5D).

 73

Use Cases: ROIs (J-Y Tinevez)
● I recently tried to code weird shapes as ROIs in ImageJ. They

were the results of a segmentation with constrained shapes.
Because I wanted to have something nice for the user, The
ROIs had to be mouse-interactive (resizable, moveable etc..). I
had a difficult time.

● Johannes proposed on the Fiji-devel list an abstract class
whose goal was to facilitate this interaction.

● But we still gave to comply to ImageJ ij.gui.Roi master class,
which is a concrete class in charge of drawing rectangle ROIs.
Inside this class, there is everything: the logic to draw it, to
interact with the user, with the image container, and the image
data. Any homemade ROI must inherit from this class, there is
no interface to implement.

 74

Use Cases: ROIs (J-Y Tinevez)
● What I would like to propose here is to go for an interface

hierarchy for ROIs, that is well decoupled, and that would allow
the flexible design of new ROIs.

● We use ROIs for many purposes, for instance:
– user interaction

● draw a rectangle to crop an image
● measure intensity with a complex area
● add non-destructive annotations

– as input/output for plugins, for instance a result of segmentation
● From this you can see that they need to:

– know how to draw themselves as an overlay
– comply to some interface to be an input of some plugins
– know how to interact with mouse clicks and drag

 75

Use Cases: µManager (N. Stuurman)

● 1. The Brightness/Contrast tool. Display of the histogram
cannot be reliably set to the dynamic range of the camera
(i.e., it always automatically goes back to the range of the
minimum and maximum pixel value in the image, which
can be extremely deceptive). No gamma correction. No
method to update histogram when the image changes. No
log display of the histogram. We ended up writing our
own, but things are still clunky because acquired images
(shown in a modified Image5D viewer) can only be
controlled by the ImageJ B&C tool.

 76

Use Cases: µManager (N. Stuurman)

● 2. Lack of plugin API. We have been bitten a number of
times by internal changes in ImageJ breaking our code.
Wayne is very responsive, but this still causes confusion.

● 3. Lack of standard for Multi-Dimensional viewer. We
ended up using Image5D viewer, Hyperstacks came later.
My impression is that the UI of Image5D is easier for users
than the UI of Hyperstacks. In any case, we will be helped
by a standard viewer for multi-dimensional images that
integrates nicely with other ImageJ tools (like 3D viewers),
and that is extensible (we do need to add a number of
buttons that interface with image acquisition).

 77

Use Cases: µManager (N. Stuurman)

● 4. MDI versus SDI. Not sure if this was on your list already
(all of you have certainly debated this in the past!), but it
seems that many people prefer the MDI model. On the
Mac, it is pretty weird that a single application has different
menus depending on which window you select (in our
case, ImageJ windows versus Micro-manager window).

 78

Use Cases: Miscellaneous

● G. Landini: no color space support (e.g., HSB)
● F. Hessman: domain coordinate systems

– S&S are planning support within imglib
– ImageJX consensus is to punt on this for now
– Need to find a group with this use case first

● Legacy AWT interface limits use of Swing
– ImageJ cannot use different L&Fs
– AWT is missing features (JSpinner, JInternalPane)
– Swing development is active, unlike legacy AWT

 79

Use Cases: Compatibility

● Advantage of ImageJ: wealth of existing code
● Problem: ImageJ2 will break that code
● Examples:

– ImageProcessor.getPixels()
– All non-private, non-final fields
– Subclasses created to sidestep API issues
– Even private fields—setAccessible(true)

 80

Use Cases: Interoperability

● FARSIGHT: ITK-driven segmentation routines
are difficult to use from Java

● CellProfiler: How can scientists combine
workflows between CellProfiler and ImageJ?

● OMERO: Database-backed images are kludgy
● Others: KNIME, Endrov, BioImageXD, PSLID...

 81

Use Cases: Performance

● Traditional tradeoff between space & time
● Tradeoff between generality & performance

– Moving toward generality requires that we
remain aware of performance issues

– But flexibility and usability remain paramount
● OpenCL is promising but negates many of

imglib's gains in generality

 82

Components of ImageJ2

● Relevant technologies
1)Data model – imglib library
2)Display – Java AWT, JAI, Swing, RCP
3)Input/output – Bio-Formats architecture
4)Regions of interest – Java AWT, JHotDraw, OME-XML
5)Scripting & plugins – Java 6 Scripting Framework

● More exploration of some technologies needed

 83

ImageJX: Separation of Concerns

 84

Decouple GUI dependencies
● Alternative GUI configurations (e.g., Swing

SDI/MDI)
● Headless operation
● Incorporation into application framework
● Easing use as a library

 85

GUI Decoupling

I m a g e W i n d o w

I m a g e C a n v a s

Image Processing GUI components with default
implementations in javax.swing

Mostly Jpanels

Other developers can provide alternate
implementations of the interfaces we define.

 86

Dynamic Plugin Discovery

● Declarative Registration using Annotations
– Menus, etc., are built dynamically from

plugin declarations
● Classes do not neet to be loading

– Uses ‘compile-time caching’ (SezPoz)
● ‘Automatic Plugins’

– I/O (Bio-Formats reader)
– Display—invoke a plugin in response to a

particular kind of data being opened

 87

Dynamic Plugin Discovery

 88

Toward Modularity & Extensibility

● Use interfaces, abstract classes, factories
– Replaceable implementations
– Enables dynamic assembly

● @ServiceProvider (e.g. SavePrefs)
● CentralLookup
● ‘Injectable Singletons’
● EventBus
● Context / Selection management

	Title
	Slide 2
	Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	ImageJ OpenCL Plugin
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

