ImageJDev

Curtis Rueden, LOCI
Grant Harris, MBL at Woods Hole

Introduction

* ImagedDev: an NIH-funded project to pro-
duce the next generation of ImagedJ

 Partnership between several institutions:
- LOCI at UW-Madison
- MBL at Woods Hole
— Broad Institute of MIT and Harvard
- Fiji group (MPI-CBG, Uni/ETH Zurich, etc.)
See also: imagejdev.org/collaborators

Outline

 \Vision

e Aims

* Design

e Progress

e Future Directions

Outline

e ViSiOon ﬁDon't be pushed by your\
_ problems. Be led by your
e AIMS dreams.”
_ —Anonymous
e Design

e Progress

4

 Future Directions

Vision: Guiding Principles

Preserve backwards compatibility
Maintain good performance

Support N-dimensional imaging

Use common input and output for data
Minimize complexity

- Introduce dependencies only when
benefits outweigh disadvantages

Employ modern software development practices

Vision: The Dream

 What is ImagedJ's greatest strength?

Vision: The Dream

 What is ImagedJ's greatest strength?

- It's extensible by writing plugins

Vision: The Dream

 What is ImagedJ's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?

Vision: The Dream

 What is ImagedJ's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?

- Plugins as modular “building blocks”

Vision: The Dream

 What is ImagedJ's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?
- Plugins as modular “building blocks”
 WWhat does modularity gain us?

Vision: The Dream

 What is ImagedJ's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?
- Plugins as modular “building blocks”
 WWhat does modularity gain us?

- Modularity facilitates interoperability

Vision: The Need

e Extensibility
* Modularity
e Interoperability

Vision: The Need

o Extens|b|||ty ﬂsystem design princip@

where the implementation
takes into consideration

° MOd U Iarlty future growth. It is a sys-

o temic measure of the abil-
e Interoperability | itytoextend a system
and the level of effort re-
quired to implement the
extension.

\—“Extensibility” on Wikipedia /

Vision: The Need

° Extens|b|||ty /I'he extent to which soft-\

ware is composed of
separate, interchange-

° MOdUIarity able components, called

o modules, which represent
° Inte rOperablllty a separation of concerns,
and improve maintainabil-
ity by enforcing logical
boundaries between
components.

\—“Modularity” on Wikipedia /

Vision: The Need

e Extensibility
e Modularity
 Interoperability

/I'he capability of diﬁereﬁ

programs to exchange
data via a common set of
exchange formats, to
read and write the same
file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
standardization during the
design of a program.

\—“Interoperability” on Wikipedia/

Vision: The Need

e Extensibility
* Modularity
 Interoperability

/I'he capability of differeh

programs to exchange
data via a common set of
exchange formats, to
read and write the same
file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
Standardization during the
design of a program.

\—“Interoperability” on Wikipedia/

Vision: The Challenge

ow do we maintain compatibility?

— Will plugins and macros still work?
— Do other programs work with Imaged 2.07?

Vision: The Solution

 Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

Vision: The Solution

 Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

 Use standards

Vision: The Solution

 Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

 Use standards

2. Implementation: how to preserve
compatibility?

Vision: The Solution

 Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

e Use standards
2. Implementation: how to preserve
compatibility?

« Small, “safe” code changes that
preserve existing behavior

Vision: The Process

e Unit tests

- A “safety net” for preserving behavior

- The act of creating them
encourages modular design

« Continuous integration
- An “early warning system”
* Project management tools, etc....

Outline

e \/ISION ﬁGoaIs are dreams with \
] deadlines.”

e AiIms —Diana Scharf Hunt

e Design

e Progress ' _ 4

 Future Directions

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms

c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

Outline

e \/ISION /I haven't failed, I've found\
_ 10,000 ways that don't

e AIms work.”

. Design —Thomas Edison

e Progress 4

 Future Directions

Design

« Considered several design approaches

- lterative (current strategy)
- Greenfield (new application)
— Delegation (change 1J1's internals)

- Adaptation (leave |J1 alone)
e Adaptation: |J2 includes |J1 as a library

e |J1 and IJ2 grow and evolve together
* More slides during roundtable if interest

Outline

o V| S | O n OUR COMPETITORS

JUST MADE OUR NELWJ
FIVE-YEAR PLAN MOOT.

e AIMmS)

e Design

* Progress

-
www.dilbert.com scottadarmsfsol.cem

LJHILE WE WJERE
STRATEGIZING. THEY
LJERE DOING SOME—
THING I BELIEVE THEY
CALL "WORK.”

J

 Future Directions

0f 02008 Scott Adams, Inc./Dist. by UFS, Inc

Progress

1) Imglib: an N-dimensional image data model
- Bio-Formats: reading data

2) Automatic plugins for extensible visualization
- Spectral lifetime image data plugin

3) OpenCL-based iterative deconvolution

Progress: Imglib

 Added data types backed by Imglib library

— Currently supports nine pixel types:

« Signed and unsigned integer, floating point
 Bit depths: 8, 16, 32, and 64 bit

 Many possible storage strategies
* Type-independent plugins

Progress: Bio-Formats

 Adapted Imaged to use Bio-Formats
natively for reading file formats

* Files are opened as N-dimensional,
imglib-backed images

Progress: Automatic Plugins

* Plugin author uses Java Annotation to label
which dimensions a plugin can handle

* When image is loaded from File/Open |J
checks dimensions and finds matching plugins

* |J automatically runs unique matching plugin,
or displays dialog of choices if several match

a Y
@Dimensions(required="X,Y,Lifetime", optional="Channel")
public class SLIMPlugInAuto implements ITAutoDisplayPlugin ({

A /

Progress: Quick Demo

Progress: OpenCL Plugin

* OpenCL: Run software on CPU and GPU cores
for fast processing-intensive analysis

* Web services: Invoke code from a remote
machine—cross-language, cross-platform

* Methodology for applying iterative speed-up to
existing Java code by translating to OpenCL

Progress

4) ImagedJX: pursuing a separation of concerns

5) Declarative plugins for greater interoperability
— CellProfiler connectivity with ImageJ

6) Requirements: community feature requests

7) Software development methodology and tools

=10l x|

Progress: ImageJX

File Edit Image Process Analyze Plugins Window Help

Ll O~ 4|+ N AQ DA

ImageWindow

Frame, JFrame, or
JInternalFrame

ImageCanvas

JPanel or Panel

Progress: Declarative Plugins

« Existing plugin example:

ImagePlus original = WindowManager.getCurrentImage();

GenericDialog gd = new GenericDialog("\"Tubeness\" Filter”);
gd.addNumericField("Sigma: "

(calibration==null) ? 1f : minimumSeparation, 4);
gd.addMessage (" (The default value for sigma “ +

"is the minimum voxel separation.)");
gd.addCheckbox("Use calibration information", calibration!=null);

gd.showDialog() ;
if (gd.wasCanceled()) return;

double sigma = gd.getNextNumber () ;
boolean useCalibration = gd.getNextBoolean();

TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);

Progress: Declarative Plugins

* Declarative plugin example:

@Parameter (label="Input image")
public ImagePlus original = null;

@Parameter (label="Sigma")
public double sigma = 1.0;

@Parameter (label="Use calibration")
public boolean useCalibration = false;

@Parameter (label="Qutput image", output=true)
public ImagePlus result = null;

public void run(String ignored) {
if (original == null)
original = WindowManager.getCurrentImage();
TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);

Progress: CellProfiler

« CellProfiler is a tool for executing high-
throughout image analysis pipelines

* Achieves better interoperability with ImageJ
using the declarative plugin mechanism

Edit

=]

Original image, cycle #1

H

)0 s 500 |
0 100 200 300 400 500 0 100 200 300 400 500
0 Nuclei outlines

Labeled image

Input image: Axon Output image: AxonsTubeness
o

00 S U
0 100 200 300 400 500 0_ 100 200 300 400 500
ined image Primary and output outlines
] 0

00
200 300 400 500 100 200 300 400
400

Inte
modu [e Morph # 10: 0.61 sec ey 00 500
module Morph # 11: 0.5% sec e 0 100 200 300 400 500 0 100 200 300 400 500
module MeasureMeurons # 12: 2,538 sec (hg) [-
medule MeasureMeurons # 13: 2,86 sec (hg)
module Savaelmages # 14: 0.57 sec (hg) o
module Savelmages # 15: 1.35 sec 5 = Blue: 0.0011
module Savelmages # 16: 1.88 sec 3
module Savelmages # 17: 0.12 sec (hg
module ExportToSpreadshest # 15: 0.00 sec

: Image
¢ Image
: Image
: Image
1 Image
: Image
: Image
: Image
: Image

e e e
R R e

& CellProfiler (v.10521): Pipeline_ImageJ2.0.cp (C:\Documents and Settings\curtis\My Documents\CellProfiler\runimagej)
| File Edit Test Window Datatools Help

CellProfiler

«cell image analysis software

[Module

4

LoadImages
GrayTaCalar

RunImage]

RunImagel
IdentifyPrimaryObjects
IdentifySecondaryObi...
IdentifySecondaryObi. .
ApplyThreshold

Apply Threshald

Morph

Morph

MeasureNeurons
Measureteurons
Savelmages
Savelmages
Savelmages
Savelmages
ExportToSpreadsheet

AAAAAAAL

£ & «
S

TXTTRTXT

“§
S

v

? Adjust modules: | + |

A_DB0824200001_E01f00d0. TIF
PANDORA_0S0824200001_BO1FO0d1. TIF
PANDORA_080824200001_BO1F00dZ. TIF
Pipeline_Imagel.cp
Pipeline_ImageJz.0.cp

Module notes

Command ar macro? ECgmmand v

Command: | Tubenessz 0

Input image | Axon =
Sigma 1.0
Uss calibration |
Qukput image [4xonsTubeness
Set the current image? B
Get the current image? .|

Run before each group? !FNgthing

Run after each group? E.No-thing
‘Wait For Imaged? |

Show Image] Show

fault Input Folder:| C:iDocuments and Settings\curtisiMy Documents\CellPrafiler|runimags;

Faulk Cukput Folder: -C:'I,Documents and SettingsicurtisiMy Documents\CellProfilerirunimage]

100
200

300

0
100
200

300

00
0

i 5 Inkensity: 0,117¢

Axon

00
0 100 200 300 400 500
AxonsTubeness

100 200 300 400 500

ey

Original image, cycle #1

100 200 300 400 500
Nuclei outlines

500

0 100 200 300 400 500

404 Red: 0.0000

Input image, cycle #1

300

400

00
0 100 200 300 400 500
Outlined image

300

400

00
0 100 200 300 400 500

Nuclei

100
200
300

400

00 IO
0 100 200 300 400 500

Threshold 0.043

of identified objects 50

TOTh pctile diameter 5.0 pixels
GOth pctile diameter B.7 pixels
Area covered by objects 08 %
Smoathing Titer size 27

Maxima suppression size 27

Green: 0,0000 Blue: 0,0000

Labeled image

100
200
300

400

00
0 100 200 300 400 500
Primary and output outlines

100
200
300

400
00
0 100 200 300 400 500

Intensity: 0.0000

« Gathered feedback from the community
* Major areas of ImageJ

- Data model & image processing

- Visualization & user interface

- Input & output

- Segmentation & regions of interest
- Scripting & plugins

Progress: Development Tools

* \Web site

« Unit test suite

« Continuous integration: Hudson

e Source control: Subversion & Git

* Project management: Maven & Trac

-

Chrome File Edit View History Bookmarks Window Help §5 m2gs 5 s By .mE 3 B 2 <) E= (e (Charged [1507:39 Q
Al i Image] About Image)Dev | imagejd ¥
€ > C ff (O imagejdev.org -

[:I Books [:I Docs D Cames [:I OME

[work [+ Mail

[:I Social r_—l Tools

(L] sciTech

About ImageJDev

Edit Outline
Ll ? AGC fgr?D”é!velope'r Confemnﬁﬂ!ﬂﬁm
e i

« §1: —g;__’._—lf!f()ctober 2010

ImageJDev & a federally funded, multi-institution effort to strengthen both the Imagel software itself and its community by pursuing a
new vision of Image.J and associated community resources, including this website, code and plugin repositories, and user and developer
documentation.

The project was launched in late September 2009, and is still in the early planning stage. This website will be updated as the project
pProgresses.

The mission of imagejdev.org is:

¢ Tolead Imagel) development with a clear vision.

¢ Tocontinue developing one official version of ImageJ to keep the user community unified and happy.

+ To collaborate with other interested parties and institutions wherever useful.

+ Toensure Image) remains useful and relevant to the broadest possible community.

+ To maintain backwards compatibility with the current ImageJ as close to 100% as possible.

s To avoid duplication of effort and instead leverage each others’ work wherever practical.

+ To provide a central online resource for ImageJ: program downloads, a plugin repository, developer resources and mare.
See the menu on the right for more information.
Attachment Size

imagej-conference-2010.jpg 34.1 KB

< About

a
o
P
4

o Aims

o Collaborators
o Funding

o History

o Proposal

o Rationale

Resources
Plugins
Roadmap

For developers
Blogs

Recent changes
Log out

My account
Recent changes
Web Links
Create content
Feed aggregator
Log out

[[] other Bookmarks

Search

=

SEd

T
L‘_ Problems | @ Javadoc E@;) Declaration | & Consele 5% b ¢ 5&| @i = | = BE-r9-=0

<terminated> Image| [Java Application] /System/Library/Frameworks/JavaVM.framework /Versions /1.4 /Home /bin/java (Oct 18, 2010 4:02:01 PM)

\J Search

Aanm Java - ijfsrc/main/java/ij/Image).java - Eclipse - (Users/bdezonia/Documents /workspace
Cér FH-Q-Q | WG | @S S SR F %% Debug &'Java
tg Package Explorer |gjii JUnit 23 =0 [i_] Image).java 28 m ImgLibProcessor.java k'ﬂ ImagePlusTest.java kID ImageStack.java Iﬂ ImagePlus.java »6 =a Help &3 =0
Finished after 109.744 seconds HE UE | % icl= = package ij; g | -
Runs: 1245/1245 @ Errors: 0 B Failures: 0 & @import java.awt.*;[] % Search
fe* b Search expression:
| This frame is the main Imagel] class. r T] e
ij-UEventListenerTest [Runner: |Unit 4] (0.000 s) ~ <p> icons e o
ij.gui.ProgressBarTest [Runner: JUnit 4] (0.128 s) | Image) is o work of the United States Government. It is in the public domain } Search scope Default
.io.FileDpenerTest [Runner: JUnit 4] (4.866 s) and open source. There is no copyright. You are free to do anything you want
ii.io.BitBufferTest [Runnar: JUnit 4] (0.090 s) with this source but I like to get credit for my work and I would like you to
.prlocess I'IoatProcl;sso;'I'.est"Ru'” : nit 4] (1.510 s) of fer your changes to me so I can possibly add them to the "official" wversion.
. o i r Jul il)
ij.LookUpTableTest [Runner: JUn (0.062 5) <pre>
jj.io.iImageReaderTest [Runner: JUnit 4] (2.448 s5) The following command line options are recognized by Imagel:
lj.process.ByteProcessorTest [Runner: JUnit 4] (0.833 s) |
imagej.process.operation.ApplyLutOperationTest [Runner: [Unit 4] (0.0} . e-name"
|imagej.process.SnapshotTest [Runner: JUnit 4] (0.156 s} Opens a file :
imagej.process.operation.ManyCursorRoiOperationTest [Runner: JUnit |} onmp:e 1: blobs.tif 2 13 i
if.qui. PointRoiTest [Runner: JUnit 4] (0.133 s) | Example 2: /Users/wayne/images/blobs.tif
e 5 SR L, W/ Example3: e81*.tif
ij.process.ShortProcessorTest [Runner: JUnit 4] (7.699 s)
imagej.process.operation.SetPlaneOperationTest [Run -iipath path
ij.ImageStackTest [Runner: JUnit 4] (20.552 s) Specifies the path to the directory containing the plugins directory
jj.gui.LineTest [Runner: JUnit 4] (0.054 s) Example: -ijpath /Applications/Imagel
ij.measure.ResultsTableTest [Runner: JUnit 4] (0.573 s)
ij.CompositelmageTest [Runner: JUnit 4] (0.205 s) “Portznz .)))
image].process.SpanTest [Runner: JUnit 4] (0.001 s) Specifies the port Imagel uses to determine if another instance is running
ij.gui.ImageReiTest [Runner: JUnit 4] (0 061 9 Example 1: -portl (use default port address + 1)
9 i g g SR]] Example 2: -port2 (use default port address + 2)
imagej.process.operation.SingleCursorRoiOperationTest [Runner: JUnit Example 3: -port® (do not check for another instance)
lj.gui.ToolbarTest [Runner: JUnit 4]
jj.io.FilelnfoTest [Runner: JUnit 4 -macro path [arg]
|image]j.process_operation.ResetUsingMaskOperationTest [Runner JUni Runs @ macro or script, passing it an optional argument,
i.gui. TextRoiTest [Runner: JUnit 4] (0.407 s) which can be retieved using getArgument()
1 - | 1 11
.measure.MeasurementsTest [Runner: JUnit 4] (0.292 s) EXOp ey MaCro dnalyRe 3
imagej.process.ImgLibProcessorTest (Runner: JUnit 4] (62.719 s) Example 2t ~macro. dnalyze /Users/nfps/indgés/stackl
U.guf.ROiTest ZRur.-‘v:-'. JUnit 4|.{0.U?2 s) - _batch path [ara]
-gui.OverlayTest [Run Junit 4] (0.002 s} Runs a macro or script in batch (no GUI) mode, passing it an optional argument.
(Fir1ii. VirtualStackTest (Runner: IUnit 41 (0.153 s} > 1 Image] exits when the macro finishes.
= Failure Trace :::E -eval "mocro code"
Evaluotes macro code
Example 1: -eval "print{'Hello, world');"
Example 2: -eval "return getVersion();"
-run command
Runs on Imagel menu command
Example: -run "About Imagel..."
</pres
Wayne Rasband (wsr@nih.gov)
L
il public class Imagel] extends Frame implements ActionlListener,
Mouselistener, Keylistener, Windowlistener, ItemListener, Runnable {
'y
/** Plugins should call IJ.getVersion() to get the version string. */ v
(_.__'_"___'_ _"_'_'_:_L"_"Z__'_'_"____________________.:, e

Go To:

Contents B Related Topics

u:ﬂ Bookmarks L\:%l Index

®"nN0o

(1):)' L G' / (f\;' [) k http:/ /dev.loci.wisc.edu:8080/

Most Visited = Getting Started Latest Headlines &
& Dashboard [Hudson]

Dashboard [Hudson]

s search

Hudseon

& People

= Build History Last Success Last Failure

E AUTO REFRESH

Last Duration

Build Queue L m 9 hr 11 min {#353) 21 hr (#350) 4 min 23 sec

Mo builds in the queue.

S hr 11 min (£299) 4 days 14 hr (£289) 2 min 31 sec
Build Executor Status

Status Leaend [forall [for failures [for just latest builds

9, 2010 9:12:40 AM Hudson ver. 1.379

‘ Chrome

File Edit View History Bookmarks Window Help IR ta300 L DOKE:

cpslls . . 3 ER T 4) E (= (Charged) [Bl07:40 Q

800

[:I Books

€« = C M O dewv.imagejdev.org/trac/imagej/timeline

[:I Docs r_—| Cames [:I OME D SciTech [:I Social r_—l Tools r_—| Work] Mail

% Timeline - Image) ¢ About ImagejDev | imagejd

Q

[[] other Bookmarks

S |
= ' ——

_Search

Login | Preferences | Help/Guide | About Trac = Forgot your password?

Wikl

m’ Roadmap " Browse Source " wWiew Tickets |' Search

¢

10/15/0:

@

Timeline

10/18/10: Yesterday

Changeset [1582] by aivar

Save, set and restore WindowManager's templCurrentimage

Changeset [1581] by aivar

Don't call AutoPlugininvoker when running a macro (It may popup a dia C;
Changeset [1580] by curtis

Flx Mawven conflguration Issue with sezpoz library

Changeset [1579] by curtis

Fix Maven conf guration Issue with sezpoz librar

Changeset [1578] by aivar

Sets temporary Image in WindowManager before load g the plug

Changeset [1577] by aivar

A A P g g

ACOed SEZPOSs dOependency

Ticket # 147 (Bioformats can't open Metamorph z-stack) closed by leegk

cuplicate: 5 |5 being adoressed Dy other work on the >-channgl representatio

Ticket # 260 (Add way to plugins automatically) created by aivar

Add annotations

PR Mt ks et e S R
arF reaulred and antlonal dimensione provide [nteface
ACD ar tations 1o i riona e oe :

equired and opt a SIONS, prov interrace .

Ticket # 250 (Try to merge imagej ijx branch back to trunk) closed by curtis

mualld: The twn branches are nat vet ready to be meraad. Reaardless. wit 1
valld: The two branches are not yet ready to be merged. Regardless, with our .

Milestone biweekly-2010: Oct-04 to Oct-15 completed

racke from 2010-Oct-04 throuah 2010-0ct-1
asks from 2010-0ct-04 throwgh 2010-0ct-15.

+— Previous Period

View changes from | 10/19/10
and 30 days back
done by

@‘1 Opened and closed tickets
1 Ticket updates

éi Repositary checkins

Milestones

W Wiki changes

Update

i

Dependency Graph
[test]

mines-jtk
— 20100113 [compile]

imglib-algorithms

Search:

] junit
‘— 4.8.1 [test]
4

— 1.43 [compile]

imglib-ij

iy
2.0-SNAPSHOT [compile]

2.0-5MAPSHOT [compile]

/

_ imglib

" 2.0-SNAPSHOT [compile]

jama
— 1.0.2 [compile]

mpicbg
— 20100908 [compile]

s 0.0KR /s

® Chrome File Window Help £ e b 00K Egul B

N - e

‘; Image] - Reactor Depender

Edit View History Bookmarks ¥ ER =) = (=] (Charged) [15]08:03 Q

-

€« = C & @ dev.imagejdev.org:8080/job/Image)/lastSuccessfulBuild/artifact/trunk/imagej/target/site/dependency-convergence.htm| S N
[Books []Docs []Games [JOME []SciTech []Social []Tools []Work [*]Mail [[] other Bookmarks
Imagel f

Last Published: 2010-10-19 Imagel @+

Parent Project
Image] Base POM_ Reactor Dependency Convergence
Project Documentation
* Project Information
About .
Continuous Legend:
Integration f'y All projects share one version of the dependency.
Dependencies
Dependency Q
Convergence
Issue Tracking Statistics:
Mailing Lists
Plugin Management
Project License
Project Plugins
Project Sumrmmary
Project Team
Source Repository
» Project Reports

_ &b 100%
;#by.*ﬂ._ OF
ven Fror
You have SNAPSHOT dependencies.

At least one project has a differing version of the dependency.

W @ @ &

Dependencies used in sub-projects

com.sun:tools

Ll 1.4.2
a. Iimagej:ij

imagej:bf-imglib

Vision
Aims

Design
Progress ' _
Future Directions

Future Directions

Pursue Adaptation design for |J 2.0
N-dimensional image data model
Investigate standards useful to ImagedJ

- Rich client platform for user interface
- Modularity and interoperability: e.g., OSGi
- ROls: e.g., JHotDraw

Improve headless behavior
Implement community requirements

Summary

« What Will Imaged 2.0 Do for Me?

- Work with existing plugins and macros

- Work with new, exciting plugins and scripts
- Handle larger, more complex datasets

— Multidimensional visualization tools

— Easier to link with other software

— Easier plugin management

Acknowledgements

* Principal Investigators

- Kevin Eliceiri (LOCI), Rudolf Oldenbourg (MBL), Anne Carpenter (Broad)

 Developers

- Grant Harris, Barry DeZonia, Aivar Grislis, Rick Lentz (ImageJDev)

- Lee Kamentsky, Adam Fraser (CellProfiler)

e Collaborators

- Wayne Rasband (ImageJ)

- Pavel Tomancak, Johannes Schindelin, Albert Cardona (Fiji)
- Stephan Preibisch, Stephan Saalfeld (Imglib, Fiji)

- Mark Longair, Jean-Yves Tinevez (Fiji)

- Jason Swedlow, OMERO development team (OME)

Discussion

« Comments? Questions?
* Thoughts on what Imaged 2.0 should be?
* |deas from the community

Design Approaches

Design Approaches

1. lterative

Pro: No project forks

Pro: Maintains compatibility
whenever possible

Pro: Brings code “under test”

Con: Heavily constrained by
the existing design

Con: Development is slow

2. Greenfield

Pro: Great flexibility

Pro: Rapid development

Pro: New code is “under test”
Con: No compatibility

Con: Forks the project

Con: Loses legacy codebase's
“embedded knowledge”

Design Approaches

1. lterative

Pro: No project forks

Pro: Maintains compatibility
whenever possible

Pro: Brings code “under test”

Con: Heavily constrained by
the existing design

Con: Development is slow

2. Greenfield

Pro: Great flexibility

Pro: Rapid development

Pro: New code is “under test”
Con: No compatibility

Con: Forks the project

Con: Loses legacy codebase's
“embedded knowledge”

Design Approaches

1. lterative —I— 2. Greenfield

?

Design Approaches

Approach #3: Delegation

« Good compatibility
* Good design flexibility

« But very disruptive of legacy work

Design Approaches

Approach #4: Adaptation

* Nearly perfect compatibility

« Smooth transition from legacy code

- Legacy work continues as long as needed

Design Approaches

Approach #4: Adaptation

« Some limits to interoperability

 Harnesses “embedded knowledge” of
legacy work without being constrained by it

ImagelX on rich client platform

W Fhoto Manages 2001006101454
Fle Edt Wew Mavigate Run Debug Took Window Help

Xa1E L OIEY ke
@x[Fes fa S rrzg

1J1 Plugins discovered

PlugIns and inserted in menus

— - Virtual
FT— . of ImagePlus

112 Core 2 - 111
Adapter

Modules

imgLib

Invisible instance of Image]

se Cases

Use Cases: VisBio

* Limited support for large datasets

- Image planes larger than 2GB
— Datasets larger than available RAM
- VirtualStacks cache only one plane at a time

e No support for 3D visualization
- Volume rendering
— Arbitrary slicing
- Realtime animation
* Also needs better support for ROls

es: Slim Plotter

dimensions

ra

* No support for processing inherent to viz

- Exponential curve fitting
- Spectral unmixing

Use Cases: Fiji

Distributing plugins is external to ImageJ

Keeping everything up to date is complex
No standard for documenting plugins

Not easy enough to prototype algorithms

- Plugins require too much boilerplate code

- No modular command framework for using
Macro Recorder with scripts

— Case logic for multiple pixel types is messy
AWT dependencies preclude headless use

Use Cases: TrakEM?2

* No support for displaying registered images
~ No display mechanism for multiple image tiles

- No mechanism for transformation from data to
display (e.g., affine)

* Regions of interest are limited
- No vector-based ROls (i.e., ROls are bitmasks)

- Multiple ROls are tacked on (ROl Manager)

- Confusing interplay between ROls, masks &
thresholds with measurement tools

Use Cases: ROls (Michael Doube)

» Recently I've been frustrated by ROl's being limited to
2D. With the emerging utility of the 3D viewer and the
proposal that Imaged 2.0 handles N-dimensional data,
It makes sense that ROls should keep up with this
development.

* In other words, in an N-dimensional image, one should
be able to specify and visualise an N-dimensional ROI.
So you can have a 3D VOI, and a 4D VOI with time
limits (or even changing shape over time), or limit the
ROI to a channel (5D).

Use Cases: ROls (J-Y Tinevez)

» | recently tried to code weird shapes as ROls in Imaged. They
were the results of a segmentation with constrained shapes.
Because | wanted to have something nice for the user, The
ROIls had to be mouse-interactive (resizable, moveable etc..). |
had a difficult time.

« Johannes proposed on the Fiji-devel list an abstract class
whose goal was to facilitate this interaction.

« But we still gave to comply to ImageJ ij.gui.Roi master class,
which is a concrete class in charge of drawing rectangle ROls.
Inside this class, there is everything: the logic to draw it, to
Interact with the user, with the image container, and the image
data. Any homemade ROI must inherit from this class, there is
no interface to implement.

Use Cases: ROls (J-Y Tinevez)

What | would like to propose here is to go for an interface
hierarchy for ROIls, that is well decoupled, and that would allow
the flexible design of new ROls.

We use ROIls for many purposes, for instance:

— user interaction

» draw a rectangle to crop an image
* measure intensity with a complex area
» add non-destructive annotations

- as input/output for plugins, for instance a result of segmentation
From this you can see that they need to:
- know how to draw themselves as an overlay

- comply to some interface to be an input of some plugins

- know how to interact with mouse clicks and drag

Use Cases: pManager (N. Stuurman)

* 1. The Brightness/Contrast tool. Display of the histogram
cannot be reliably set to the dynamic range of the camera
(i.e., it always automatically goes back to the range of the
minimum and maximum pixel value in the image, which
can be extremely deceptive). No gamma correction. No
method to update histogram when the image changes. No
log display of the histogram. We ended up writing our
own, but things are still clunky because acquired images
(shown in a modified Image5D viewer) can only be
controlled by the ImageJ B&C tool.

Use Cases: pManager (N. Stuurman)

» 2. Lack of plugin APl. We have been bitten a number of
times by internal changes in ImagedJ breaking our code.
Wayne Is very responsive, but this still causes confusion.

« 3. Lack of standard for Multi-Dimensional viewer. We
ended up using ImagesD viewer, Hyperstacks came later.
My impression is that the Ul of Image5D is easier for users
than the Ul of Hyperstacks. In any case, we will be helped
by a standard viewer for multi-dimensional images that
integrates nicely with other ImagedJ tools (like 3D viewers),
and that is extensible (we do need to add a number of
buttons that interface with image acquisition).

Use Cases: pManager (N. Stuurman)

» 4. MDI versus SDI. Not sure if this was on your list already
(all of you have certainly debated this in the past!), but it
seems that many people prefer the MDI model. On the
Mac, it is pretty weird that a single application has different
menus depending on which window you select (in our
case, Imaged windows versus Micro-manager window).

Use Cases: Miscellaneous

» G. Landini: no color space support (e.g., HSB)

 F. Hessman: domain coordinate systems

- S&S are planning support within imglib
- ImageJX consensus is to punt on this for now
- Need to find a group with this use case first

* Legacy AWT interface limits use of Swing

- Imaged cannot use different L&Fs
- AWT is missing features (JSpinner, JinternalPane)
- Swing development is active, unlike legacy AWT

Use Cases: Compatibility

» Advantage of ImagedJ: wealth of existing code
* Problem: ImagedJ2 will break that code
 Examples:

- ImageProcessor.getPixels()

- All non-private, non-final fields

— Subclasses created to sidestep API issues
- Even private fields—setAccessible(true)

Use Cases: Interoperability

» FARSIGHT: ITK-driven segmentation routines
are difficult to use from Java

e CellProfiler: How can scientists combine
workflows between CellProfiler and ImagedJ?

« OMERO: Database-backed images are kludgy
* Others: KNIME, Endrov, BiolmageXD, PSLID...

Use Cases: Performance

* [raditional tradeoff between space & time
» [radeoff between generality & performance

- Moving toward generality requires that we
remain aware of performance issues

- But flexibility and usability remain paramount

* OpenCL is promising but negates many of
iImglib's gains in generality

onents of ImageJ2

ologies

glib library

AWT, JAI, Swing, RCP

3)Input/output — Bio-Formats architecture
4)Regions of interest — Java AWT, JHotDraw, OME-XML
5)Scripting & plugins — Java 6 Scripting Framework

* More exploration of some technologies needed

ImageJX: Separation of Concerns

Decouple GUI dependencies

 Alternative GUI configurations (e.g., Swing
SDI/MDI)

 Headless operation
* |[ncorporation into application framework
e Easing use as a library

GUI Decoupling

e

File Edit Image Process Analyze Pluging Window Help
B oo~z 4]+ A A |alo2 |8w]@] |
Text toal T

File Edit Ilmage Process Analyze Pluging Window Help ImageWindow

ImageCanvas

File Edit Image Process Analyze Pluginsg Window Help

W oz~ =N A+ A A [alelz] |2]al@] |

Texttool el

Dynamic Plugin Discovery

e Declarative Registration using Annotations

- Menus, etc., are built dynamically from
plugin declarations

» Classes do not neet to be loading
- Uses ‘compile-time caching’ (SezPoz)
« ‘Automatic Plugins’

- 1/O (Bio-Formats reader)

— Display—invoke a plugin in response to a
particular kind of data being opened

Dynamic Plugin Discovery

ackage demo.pluginl;

import demo.api. =
import java.awt.event.ActionEvent;
import java.awt.event.ActionlListener;

f (
label = "Exit”,
menu = "File",
icon = "demo/pluginl/movieNew2d.gift",
bundle = "demo.pluginl.properties”)

public class ExitAction implements ActionlListener §

public void actionPerformed(ActionEvent e) {
System.exit(8);

1

]

}I

Toward Modularity & Extensibility

e Use interfaces, abstract classes, factories

- Replaceable implementations
- Enables dynamic assembly

* @ServiceProvider (e.g. SavePrefs)
* CentralLookup

* ‘Injectable Singletons’

 EventBus

e Context / Selection management

ImageJDev

Curtis Rueden, LOCI
Grant Harris, MBL at Woods Hole

Thanks for the opportunity to speak to you all, and to
Andreas for inviting me. My name is Curtis Rueden
of the Laboratory for Optical and Computational
Instrumentation. Grant Harris of the Marine
Biological Laboratory at Woods Hole unfortunately
could not be here in person due to a personal
injury, but is listening in via Skype, and will be
available during the round table discussion
afterwards.

Introduction

* ImageJDev: an NIH-funded project to pro-
duce the next generation of ImageJ

» Partnership between several institutions:
- LOCI at UW-Madison
- MBL at Woods Hole
- Broad Institute of MIT and Harvard
- Fiji group (MPI-CBG, Uni/ETH Zurich, etc.)
See also: imagejdev.org/collaborators 2

The ImageJDev project seeks to create the next generation
version of Imaged. We'll describe what we mean by that
shortly, but first some background on who we are.

ImagedDev is a collaboration between several institutions: 1)
LOCI, which is a biophotonics lab in Madison, Wisconsin,
USA; 2) MBL at Woods Hole in Massachusetts, an
international center for research, education, and training in
biology, biomedicine and ecology; 3) the Broad Institute in
Boston, a cross-disciplinary group researching systematic
approaches to biological sciences; 4) the Fiji group,
consisting of several different institutions; and 5) Wayne
Rasband, the author of ImageJ.

There are four full-time developers at LOCI including myself,
Grant Harris at Woods Hole, two developers at the Broad
Institute focusing on CellProfiler integration, and several
other contributors and advisors including Wayne Rasband,
the Fiji developers and members of the ImageJX mailing list.

See the web site for a complete list of collaborators.

Outline

e Vision

« AIms

 Design

* Progress

e Future Directions

This talk will describe the ImagedJDev effort, including
our vision and goals for ImagedJ 2.0; proposed
design of the software; progress so far; and what's
coming, both over the next year and longer term.

Please feel free to interrupt with simple questions
during the presentation. For extended discussion of
more complex issues, please make a note and
bring it up during the round table discussion.

Outline

e Vision ﬁDon’t be pushed by your)
_ problems. Be led by your
e Aims dreams.”
) —Anonymous
» Design
e Progress _ W4

e Future Directions

It is important to spend some time discussing the
vision of the project, and the rationale behind it.

Vision: Guiding Principles

Preserve backwards compatibility

Maintain good performance

Support N-dimensional imaging

Use common input and output for data

Minimize complexity

- Introduce dependencies only when
benefits outweigh disadvantages

Employ modern software development practices

5

First, let's define some guiding principles, tenets we
will follow as we

As development continues, our specific approach
may change, but there are rules we won't break

Vision: The Dream

 What is Imaged's greatest strength?

Now that we have some principles to ground us, let's
take a moment to ponder: what is Imaged's greatest
strength?

Of course, there are many possible answers—its
simplicity, fast performance, large community of
users—but we would say its greatest strength is its
extensibility.

Vision: The Dream

 What is Imaged's greatest strength?
- It's extensible by writing plugins

You can extend Imaged's ability to perform image
processing by creating plugins, macros and scripts.
It's a powerful technique, but also easy to do—and
surely one of the primary reasons for ImageJ's
success.

Combined with the fact that the software is open
source, this extensibility has enabled ImagedJ to
become a community-driven phenomenon.

Vision: The Dream

 What is Imaged's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?

With that in mind, is there a way we can take it one
step further? Can we take this potential for
extensibility and make it even better, without
compromising Imaged’'s many other strengths?

Vision: The Dream

 What is Imaged's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?

- Plugins as modular “building blocks”

Well, if it were not only easy to write a plugin, but also
easy for others to reuse your plugin... we would
have an ever-increasing collection of “building
blocks” to choose from—a collaborative, modular
design.

Vision: The Dream

 What is Imaged's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?
- Plugins as modular “building blocks”
» What does modularity gain us?

Such a modular system provides building blocks for
use not only within Imaged itself, but also from
other software systems.

Vision: The Dream

 What is Imaged's greatest strength?
- It's extensible by writing plugins
 How can we expand on this potential?
- Plugins as modular “building blocks”
» What does modularity gain us?

- Modularity facilitates interoperability

As such, modular components provide the means for
other software to interoperate with ImagedJ, since
each module can be used individually, overridden
or swapped out, like parts under the hood of a car.

Vision: The Need

» Extensibility
« Modularity
* Interoperability

To summarize, we can pursue our dream of
strengthening ImagedJ by improving Imaged's
extensibility, its modularity and its interoperability.

Let's briefly examine what each of these terms
means.

Vision: The Need

° EXtenSIblllty KA system design principh
where the implementation
takes into consideration

* Modu |ar|ty future growth. It is a sys-

. temic measure of the abil-
e Interoperability ity to extend a system
and the level of effort re-
quired to implement the
extension.

K—“Extensibility” on Wikipedia /

First of all, better extensibility will make it easier than
ever to write plugins and scripts, build on each
others' work, and expand ImagedJ's capabilities in
all sorts of ways.

As the old programming proverb goes, the system
should “make simple things easy, and difficult
things possible.”

Vision: The Need

e Extensi b|||ty ﬂhe extent to which soft-\\

ware is composed of

. separate, interchange-
. MOdu Iarlty able components, called
. modules, which represent
° |nte I’Opel’ablhty a separation of concerns,
and improve maintainabil-
ity by enforcing logical
boundaries between
components.

\\—“Modularity” on Wikipedia /

Secondly, a modular design makes Imaged easier to
understand by dividing what the program can do
into clear component parts. And it will make both
extensibility and interoperability much more
achievable.

First and foremost, ImageJ must provide the tools for
building these modules—a “system for extending
the system,” if you will.

Beyond that, it should provide the core modules for
scientific image processing. As software developers
create additional modules of common utility, they
should become part of the standard ImageJ
distribution.

Vision: The Need

e Extensi b|||ty ﬂ'he capability of differe}\

programs to exchange

. data via a common set of
. MOdU|ar|ty exchange formats, to

_ read and write the same
e Inte roperab|l|ty file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
standardization during the
design of a program.

\\—“Interoperability" on Wikipedia/ 15

Lastly and perhaps most importantly, ImageJ must
interoperate with other software in order to be
useful.

At LOCI, interoperability is our mantra. It is a central
goal of everything we do, and in a broader sense, a
goal of science as a whole. For those of you
familiar with the Bio-Formats library and the Open
Microscopy Environment consortium, these tools
were designed at every level for use with other
software.

We want Imaged to be similarly flexible.

Vision: The Need

e Extensi b|||ty ﬂ'he capability of differe}\

programs to exchange

. data via a common set of
= MOdU|ar|ty exchange formats, to
_ read and write the same
e Inte roperab|||ty file formats, and to use
the same protocols. The
lack of interoperability
can be a consequence of
a lack of attention to
standardization during the
design of a program.

\\—“Interoperability" on Wikipedia/ 16

Note the second half of this definition, taken from
Wikipedia: “The lack of interoperability can be a
consequence of a lack of attention to
Standardization.”

The essence of interoperability is the use of
standards: data structures or communication
protocols common to multiple programs. Hence, to
achieve true interoperability, we must leverage
existing approaches whenever possible—and
define our own when nothing suitable already
exists.

Of course, such tools and standards must be chosen
selectively and cautiously. But there is great benefit
to doing so.

Vision: The Challenge

 How do we maintain compatibility?

— Will plugins and macros still work?
- Do other programs work with ImagedJ 2.0?

That said, there are still challenges.

Of particular note is this: to improve a program, we
must change it. Unfortunately, changing code is
inherently dangerous, because it is extremely
fragile; changing a single character can transform a
working program into non-functional junk—or
worse, have subtle, far-reaching consequences on
ostensibly unrelated parts of the program.

Hence, one primary challenge is maintaining
compatibility with the wealth of existing plugins,
macros, scripts and other software.

Fortunately, there are solutions.

Vision: The Solution

« Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

So, we have identified a need for interoperability and
extensibility.

Vision: The Solution

« Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

» Use standards

And we've noted that using existing standards
provides a path toward achieving those goals.

However, while the use of standards contributes
much toward good software design, it often ignores
the issue of good software implementation
practices...

Vision: The Solution

« Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

» Use standards

2. Implementation: how to preserve
compatibility?

20

...and doesn't help answer our second question: how
do we maintain compatibility with existing software?

Hence, standards may seem somewhat analogous to
a building's blueprint: they describe the final
product, but not the physical process of
construction.

However, it turns out there are standards in the
community for software development processes as
well. And just as we benefit from utilizing standard
software libraries and formats, we can also take
advantage of these standard processes.

Vision: The Solution

« Two primary questions:

1. Planning: how to achieve interoperability,
modularity and extensibility?

» Use standards

2. Implementation: how to preserve
compatibility?

« Small, “safe” code changes that
preserve existing behavior

21

Specifically, good software development consists of a
methodology that stresses small code changes,
with verification at every step that the program's
behavior is maintained.

Vision: The Process

e Unit tests

- A “safety net” for preserving behavior

- The act of creating them
encourages modular design

» Continuous integration
- An “early warning system”

 Project management tools, etc....

22

Further, by creating a collection of automated
routines called unit tests that verify each existing
individual program function remains unchanged, we
can have a safety net for determining whether a
given change has harmed compatibility.

Going a step further, we can employ a continuous
integration system to automatically run these tests
every time someone makes a change—and if any
tests fail, email the offender about it. This catches
any problems introduced as early as possible.

Such details on software development processes
have filled many books, so I'll stop there, but
hopefully you get the idea that standards help here
as well.

Outline

e Vision ﬁGoaIs are dreams with \
] deadlines.”

e Aims —Diana Scharf Hunt

» Design

« Progress _ 4

e Future Directions

23

So, now that you know why we are doing this, we'll
briefly describe what we are funded to do. We have
defined three major project aims, related to our
vision for ImageJ2.

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

24

Aim 1 is focused on reengineering ImagedJ to target
the goals we just described. In essence, Aim 1A s
about modularity, Aim 1B targets extensibility, and
Aim 1C improves interoperability.

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

25

Aim 1A focuses on separating Imaged's central processing
logic from its user interface. We want it to be possible to
execute plugins, macros and other processing tasks
without requiring any user interaction or displaying any
windows. This idea is known as “separation of concerns”
and is very related to the concept of modularity we just
described.

By respecting this separation of concerns, many new things
become possible. It becomes easier to run Imaged on a
cluster, or as a client-server application. It eliminates the
dependency on any particular user interface, so for
example the ImagedJ2 interface could use Swing or SWT
instead of AWT, enabling many more standard interface
features such as additional widgets, multiple document
interface layouts, and window docking. And it becomes
much easier to develop a version of Imaged for mobile
devices or the web.

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

26

Aim 1B is focused on improving ImagedJ's plugin
mechanism. As we discussed earlier, Imaged's
extensibility is one of its key strengths, and by
improving how plugins work, we make ImageJ
more powerful and easier to use for science.

We'll show some examples of these improvements
later, including declarative plugins, display plugins,
and a metadata-rich plugin discovery mechanism.

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

27

Aim 1C refers to the addition of several key features
to ImagedJ's processing capabilities: datasets
beyond five dimensions, very high resolution image
planes, data stored remotely, and a richer set of
supported metadata.

Our main approach for accomplishing this sub-aim is
to use an imaging library called imglib, developed
at MPI-CBG in Dresden. Imglib is currently part of
Fiji, but is only partially compatible with ImageJ.

Later, we'll show our progress integrating imglib with
ImagedJ to enable true N-dimensionality, more types
of images, and flexible sources of data. We'll also
show an example of higher-dimensional data: a
plugin for working with combined spectral lifetime
images.

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

28

Aim 2 seeks to connect ImagedJ with other existing imaging
tools. This work will help development proceed in a
practical direction with an emphasis on interoperability.
By doing this, we will ensure that the improvements from
Aim 1 are not being done in a vacuum, but rather with
specific use cases in mind.

While Aim 2 focuses on two specific tools, CellProfiler and
VisBio, our goal is really to integrate the various use
cases suggested by the community. CellProfiler and
VisBio are highlighted in the proposal because they
represent two opposite ends of the interoperability
spectrum: CellProfiler is a standalone tool that would
benefit from a loose two-way communication style of
integration, whereas VisBio is seeks to do many of the
same things Imaged can, but in N dimensions with better
separation of concerns, and thus is a natural fit as a suite
of Imaged plugins harnessing the new architecture.

Aims

1. Improve Imaged’s core architecture

a) Separate data model from user interface
b) Develop extensions framework for algorithms
c) Broaden the image data model

2. Expand interoperability with other tools
3. Grow ImagedJ community resources
See also: imagejdev.org/proposal

29

Lastly, Aim 3 is a fairly broad set of goals intended to
foster the idea of community-driven development,
including strong web-based resources for both
users and programmers. We want to establish a
central community resource for accessing software
releases, plugins and scripts, source code,
documentation, and more.

This aim also specifically targets compatibility with
the wealth of existing community-created plugins,
macros and other code. This goal will ensure that
ImageJ2 is not a reboot, but rather a continuation of
ImagedJ's development.

For more details on these aims, including the full
technical proposal, see the ImageJDev web site.

Outline

e Vision /I haven't failed, I've found\
_ 10,000 ways that don't

e AIms work.”

. Design —Thomas Edison

e Progress _ 4
e Future Directions

30

Next, we will cover how we plan to accomplish our
goals. There won't be time to fully explore the
specifics, but we will briefly summarize our planned
approach.

Design

» Considered several design approaches
- Iterative (current strategy)
- Greenfield (new application)
- Delegation (change IJ1's internals)
- Adaptation (leave IJ1 alone)

» Adaptation: 1J2 includes 1J1 as a library
« |J1 and [J2 grow and evolve together

31

» More slides during roundtable if interest

For the last few months, we have struggled to come up with
a design that accomplishes all the goals outlined earlier,
while maintaining our guiding principles. We knew we
would need to restructure things a bit, and move away
from the current Imaged development model, partly due
to the scope of what we want to accomplish, and partly
because there is now a larger core development team.

Based on feedback from all involved, we settled on an
approach we call Adaptation, where the new ImageJ2
program includes Imaged1 as a library, communicating
with it as necessary to execute plugins and macros
faithfully. This approach has seen some success in
industry—for example, Adobe overhauled their Flash
virtual machine in version 9, but continued bundling the
older VM as well for compatibility.

The Adaptation approach will allow Imaged1 and ImageJ2
to both continue developing, and allow users to gradually
migrate to ImageJ2 over time.

e Vision

e Aims

» Design

* Progress

Outline

OUR COMPETITORS
JUST MADE OUR NELWJ
FIVE-YEAR PLAN MOOT.

WHILE WE LERE
STRATEGIZING, THEY
WERE DOING SOME—
THING I BELIEVE THEY
CALL "WORK.”

5

Dist. by UFS, Ine

2408 ©2008Scot Adams, Inc./|

L

e Future Directions

32

Now we would like to share progress so far across

several areas.

All of this work is under heavy development, and it

will be several more months before most of it is

ready for general use. Our goal is to have a beta of

Imaged2 available some time in the spring.

Progress

1) Imglib: an N-dimensional image data model
- Bio-Formats: reading data

2) Automatic plugins for extensible visualization
- Spectral lifetime image data plugin

3) OpenCL-based iterative deconvolution

33

First, we have begun integrating the imglib library with
Imaged, and have a file reader module that uses Bio-
Formats to import data as imglib images.

Second, we have a simple prototype of a “display plugin”
mechanism, which automatically executes a compatible
visualization plugin when an image is first opened, based
on the image's dimensional structure—and we wrote a
display plugin for visualization of lifetime images.

Third, we did some work translating Bob Dougherty's 3D
iterative deconvolution plugin to use OpenCL, which
enables GPU-accelerated processing to achieve a six-
fold speed increase.

Progress: Imglib

» Added data types backed by Imglib library
- Currently supports nine pixel types:

« Signed and unsigned integer, floating point
« Bit depths: 8, 16, 32, and 64 bit

* Many possible storage strategies
» Type-independent plugins

34

Imglib is a library for N-dimensional image processing in Java,
developed at MPI-CBG in Dresden by Stephan Saalfeld and
Stephan Preibisch.

We have added limited support for imglib-based image data to
Imaged. This enables ImageJ to work with new pixel types such
as 32-bit integer data, but more importantly to take advantage of
imglib's flexible container approach. With imglib, your data could
be stored in an array in memory—which is how ImagedJ currently
works—or alternatively could be access your images from a
remote database or other source.

Imglib also allows you to write a plugin once that works with all
pixel types, rather than needing a special case for each one.

Our current approach for using imglib within ImageJ required
changing the ImageJ1 code, but since settling on the
Adaptation-based design, we plan to rework this to make it more
of an add-on from the ImageJ2 side, rather than altering
ImageJ1.

If you want to learn more about Imglib, | encourage you to attend
Stephan Preibisch's imglib workshop tomorrow.

Progress: Bio-Formats

» Adapted ImageJ to use Bio-Formats
natively for reading file formats

» Files are opened as N-dimensional,
imglib-backed images

Bio-Formats is a library developed at LOCI for
reading and writing file formats. Fiji currently comes
bundled with the Bio-Formats plugins, but we would
like to use Bio-Formats as a model for ImagedJ's
input/output routines.

We wrote a module for loading an imglib image from
a file on disk using Bio-Formats. Together with the
imglib support, Imaged2 can natively use Bio-
Formats to open image data, preserving the N-
dimensional structure.

I'll show this in action in shortly.

Progress: Automatic Plugins

* Plugin author uses Java Annotation to label
which dimensions a plugin can handle

* When image is loaded from File/Open |J
checks dimensions and finds matching plugins

* |J automatically runs unique matching plugin,
or displays dialog of choices if several match

@Dimensions(required="X,Y,Lifetime", optional="Channel")
public class SLIMPlugInAuto implements IAutoDisplayPlugin {

}
36

Due to the variety of possible in image data these
days, we are interested in ImagedJ providing context-
sensitive visualization, depending on the type of
image.

*explain example annotation®
explain dynamic plugin discovery

We have developed an example plugin for spectral
lifetime data, which I'll show now.

36

Progress: Quick Demo

37

Execute ./ij.sh in Terminal

File/Open test_greys.lif

Show new type on Image/Type menu
Move to later timepoint

Do “make composite” on test_greys.lif

File/Open image.zvi

Do Plugins/Filters/Floyd-Steinberg on image.zvi
Do Edit/Undo to undo it

File/Open the SDT file, explain SLIM Plugin a little

Quit ImageJ

37

Progress: OpenCL Plugin

* OpenCL: Run software on CPU and GPU cores
for fast processing-intensive analysis

* Web services: Invoke code from a remote
machine—cross-language, cross-platform

* Methodology for applying iterative speed-up to
existing Java code by translating to OpenCL

38

*explain the three points™

Unfortunately, no demo...

38

Progress

4) ImageJX: pursuing a separation of concerns

5) Declarative plugins for greater interoperability
- CellProfiler connectivity with ImageJ
6) Requirements: community feature requests

7) Software development methodology and tools

39

A few other areas of progress...

We have been working on a refactored version of ImageJ
codenamed “ImageJX” with a more flexible user
interface...

I'll cover use of an updated “declarative” plugin
mechanism, which has proved useful for integrating
other applications such as CellProfiler with
Imaged...

I'll briefly summarize the categories of feedback we
received from the Imaged community regarding
what they would like to see in ImagedJ 2.0...

And I'll explain some of the tools we've adopted to
foster effective development practices.

ImagedX is an attempt to rework the core of ImageJ
to have “GUI independence”™—a better distinction
between the parts of the program that do the actual
Image processing, and other parts that display user
interface on screen.

We have code in development that produced the
interface you see here, using a Swing MDI model
rather than ImagedJ's usual AWT interface. The goal
is not necessarily to “port Imaged to Swing,” but
rather to show that an ImagedJ user interface could
take many forms. This work paves the way for
Imaged in many other contexts, from command line
or headless operation mode, to a web-based
interface, to use on mobile devices.

Progress: Declarative Plugins

« Existing plugin example:

ImagePlus original = WindowManager.getCurrentImage();

GenericDialog gd = new GenericDialog("\"Tubeness\" Filter”);
gd.addNumericField("Sigma: ",

(calibration==null) ? 1f : minimumSeparation, 4);
gd.addMessage (" (The default value for sigma “ +

"is the minimum voxel separation.)");
gd.addCheckbox ("Use calibration information", calibration!=null);

gd.showDialog() ;
if (gd.wasCanceled()) return;

double sigma = gd.getNextNumber () ;
boolean useCalibration = gd.getNextBoolean();

TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);
41

Johannes Schindelin of the Fiji project came up with
a clever way to make plugins simpler, while also
allowing them to be run in more contexts. This work
goes hand in hand with the ImageJX idea of good
separation of concerns—the plugin processing logic
should not need to invoke any particular user
interface components, but rather merely perform
operations on data.

Here is an example to illustrate. *explain®

Progress: Declarative Plugins

» Declarative plugin example:

@Parameter (label="Input image")
public ImagePlus original = null;

@Parameter (label="Sigma")
public double sigma = 1.0;

@Parameter (label="Use calibration")
public boolean useCalibration = false;

@Parameter (label="Output image", output=true)
public ImagePlus result = null;

public void run(String ignored) {
if (original == null)
original = WindowManager.getCurrentImage();
TubenessProcessor tp = new TubenessProcessor(sigma, useCalibration);
42
}

*continue explanation®

It's a “declarative” pluginbecause it clearly declares
input and output parameters, with useful metadata.

No more need to invoke GUI-centric concepts such
as GenericDialog—less boilerplate code.

Enables greater interoperability. In interactive mode,
automatically constructs and displays input dialog.
But other modes are also possible.

The annotations standardize the mechanism for
declaring plugin inputs and outputs, allowing the
plugin to be used by any compatible imaging
program, not just ImageJ.

Progress: CellProfiler

» CellProfiler is a tool for executing high-
throughout image analysis pipelines

» Achieves better interoperability with ImageJ
using the declarative plugin mechanism

43

CellProfiler is a program developed at the Broad
Institute, for performing automated analysis of large
numbers of images.

The user defines a pipeline of operations to perform,
then repeats that pipeline across many datasets.

CellProfiler recently added the ability to call an
Imaged plugin as part of a pipeline. However, the
integration required ImagedJ to be displayed
onscreen, which is a problem when executing
pipelines on a cluster with no user interface.

The CellProfiler team was able to improve their
support for Imaged plugins by utilizing the new
declarative plugins mechanism.

I
o

[
%

Here we see CellProfiler interacting with 1J1's
standard plugin mechanism. This pipeline calls the
Tubeness plugin, written by Mark Longair, Stephan
Preibisch and Johannes Schindelin, which filters an
image stack to produce a score for how "tube-like"
each point in the image is.

Note that the ImageJ windows must be physically
shown on-screen, in addition to the CellProfiler
interface's windows.

Further, the macro execution shown above is error-
prone and can only be accomplished by a user who
is very familiar with both applications.

& CellProfiler (v.10521): Pipetine_k

ellProfiler\runimagej)

Fle Edt Test Window Datatoos Help

CellProfiler

v Runimagel
B runimage)
B tdentifyPrimaryobjects
' tdentfySecondaryOby.
IdentySecandaryOb)
ApplyThreshold
ApplyThreshold
Horph
Worph
Weasurelleurons
Wessuehieurons
Savelmages
Savelmages
Savelmages
Savelmages
ExportTospreadshest

adpseraies + | - |~ | |

[PANDOR_030824200001_EO1F00d0. TIF
PANDORA 030224200001 E01F00d1 TIF
PANDORA 030524200001 E01F00d2. TIF
Pipsiine.

Pipeline_Tmage12.0.cp

E2]

I NN

6

LA

Modue nates

Command or macro? | Conmand v

Command: [Tubeness2 0

Input imege| axon =

sarafi.0

Use calbration|

Outputmage #xonsTubeness
Setthe current image?|
Gek the current image? |
e
L |

waitfor Image7? |

Showlmage show

7 etadk opuk Flder |
2

= !

7 [outukFlenametoeFeukouT mat

I | Allow overarite?| Anahyze images

iwielcome to CelFrofiler

v

i 4+ =
Original image, cycle #1

100
200
300
400

500
0 100 200 300 400 500
Nudlei outlines

100
200
300
400

500
0 100 200 300 400 500

Red: 0.0000

Here we see CellProfiler utilizing

100 200 300 400 500
AxonsTubeness

100 200 300 400 500

Intensity: 0.117¢

EEILT
Input image, cycle #1

100
200
300
400

500
0 100_200 300 400 500
Oitined image

500
0 100 200 300 400 500

Threshold
% of Genifed Gbjects

[TO pee drameter |
90 pere drameter |
Ares coversd by objects
The TiEer s

Viaxims Suppression Size

(reen: 00000 Blue: 0,0000

Labeled image

500
0 100 200 300 400 500

Intensty: 0.0000

the new declarative

mechanism. Lee Kamentsky translated the
Tubeness plugin into a declarative plugin, which
enables CellProfiler to more easily integrate with its
own user interface. The 1J2 plugin tells CellProfiler
the inputs and outputs, as well as helpful text to
display next to each field.

Notice that no ImageJ windows need to appear. The
interoperability is also more robust; the Broad
Institute is already actively using Imaged plugins
with CellProfiler on high-throughput screens on
their cluster.

» Gathered feedback from the community
» Major areas of ImageJ

- Data model & image processing

- Visualization & user interface

— Input & output

- Segmentation & regions of interest

- Scripting & plugins

46

One of the first things we did was to solicit feedback
from community regarding ImageJ 2.0's needed
features, and we got a pretty great response. There
isn't time to list it all here, but we found that nearly
everything mentioned fell into one of the above five
categories.

| have quite a few slides detailing individual items,
which are available for reference during the round
table discussion as needed.

Progress: Development Tools

» Web site

» Unit test suite

« Continuous integration: Hudson

» Source control: Subversion & Git

* Project management: Maven & Trac

47

As | mentioned earlier, we want to have an effective
development process. We are using several
standard tools and methods to assist with this goal.

@ Chrome File Edit View History Bookmarks Window Help Py L L) cmslE_ __

3

<] (Charged) [B507:39 Q

N 000

314 Image) & About ImageDev | imagejd

imagejdev.org

[JBooks [pocs [cames [Jome ([dscTech ([social [Tools [work [Mail

For developers Blogs

About ImageJDev
Edit Outline

R T e
!I li ‘l Ii (o g tisiope Contererlol 41|

455:27-2970ctober 2010

ImageJDev is a federally funded, multi-institution effort to strengthen both the ImageJ software itself and its community by pursuing a
new vision of ImageJ and associated community resources, including this website, code and plugin repositories, and user and developer
documentation.

The project was launched in late September 2009, and fs still in the early planning stage. This website will be updated as the project
progresses.

The mission of imagejdev.org fs:

To lead ImageJ development with a clear vision.
To continue developing one official version of Image. to keep the user community unified and happy.
= To collaborate with other Interested parties and institutions wherever useful.

= To ensure Image. remains useful and relevant to the broadest pessible community.

= To maintain backwards compatibility with the current ImageJ as close to 100% as possible.
= To avoid duplication of effort and instead leverage each others’ work wherever practical.
= To provide a central online resource for ImageJ: program downloads, a plugin repository, developer resources and more.

See the menu on the right for mere information.
Attachment size

imagej-conference-2010.jpg 34.1 KB

[Other Bookmarks

[|

About

o Aims

o Collaborators
» Funding

o History

o Proposal

< Rationale
Resources
Plugins
Roadmap

For developers
Blogs

Recent changes
Log out

My account
Recent changes
Web Links
Create content
Feed aggregator
Log out

—

This is our website for the ImageJDev project, with
documentation and links to the other tools.

It is set up using the Drupal content management
system, so that we can easily extend the
functionality, and so that multiple users can

collaboratively edit the site.

We still have a lot more work to do getting more

content on the site, but it is a start.

800

Java - ij/src/main/java/ij/Imagel.j

= Eclipse -

35v O Qv
1% Package Explorer [cfijunit £3
Finished after 109.744 seconds

H#E &S F

=8
o BE (@ Bl

B Failures: 0

Runs: 1245/1245 B Erors: 0

Fioli UEventListenerTest [Runner: JU
Eicji.gui ProgressBarTest [Runne

(©.0005)
Unit 4] (0.128 5)

Eicli.io FileOpenerTest [Runner: JUnit 4] (4.866)
Eicl.io BitBufferTest [Runrer: unit 4] (0.090 5)
Eizji-process FloatProcessorTest [Runner: Junit 4] (1510 5)
B LookUpTableTest [Runner: Jun

410.0625)
il o mageReaderTest (Runner. JUnit 4] (2.448 5)
i process ByteProcessorTest (Runner 8335
ilimage process.operation ApplyLutOperationTest (Runner: JUnit 4] (0.4
limage;process SnapshotTest [Runner: Uit 4 (0,156)
Goimagel tion ManyC:
i gui PoincRoTest [Runner: Uit 4] (0,133 9
i process ShortProcessorTest (Runner JUnic 4] (7,636 5)
-Jimage;process.operation SetPlaneOperationTest [fur
il ImageStackTest (Runner:JUnit 4] (20,552
i gui.LineTest [Runner: JUnit 4] 0.054 3
i messure ResultsTableTest (Runner: JUnit 4] 0573 5)
il CompositelmageTest [Runner:Jurit] (0.205)
limageprocess SpanTest (1 00019
i guiImageRoiTest (Runner: Juni 4] 0,001 5)

lec

[Runner: Junit

Unit 4] 0.0

er: Juni

Test [Runner: Junit

Hiil.gui ToolbarTest (Runner: JUnit 4] (0.000s)
Eicli.io FileinfoTest [Runner: Junit 4] (0.001 5)

image). . OperationTest [Runner: JUni
Bl gui TextRoiTest [Runner: JUnit 4] (0.407)
EicJi measure. MeasurementsTest [Runner: JUnit 4] (0.292 5)

Eizjimage.process.ImgLibProcessorTest (Runner: JUnit 4] (62.719 5)
Unit 4] (0.0725)

Unit 4] (0.002 5)

Uni 41 0,153)

Eizji gui RoiTest [Ru
Ficli.gui.OverlayTest (Runne
Fii VirtualStackTest (Runn.

Falure Trace

1) imageyjava 82

Sl e

[3) imgLibprocessor java 1] ImagePlusTest java 11) 1mageStack java

package ij;

@ import java.awt

yes
This frame is the main Image] class

Inage] is a work of the United States Govermment. It is in the public domain
There is no copyright. You are free to do anything you want

ith this source but I like to get credit for my work and I would lik

offer your changes to me so I can possibly add them to the "official

pre
The following comand line options are recognized by Image)
"file-name"
Opens a file
Exanple 1: blobs.tif
Example 2: /Users/wayne/images/blobs.tif
Example3: e81®.4if
iipath path

Specifies the path to the directory containing the plugins directory
Example: -iipath /Applications/Inage]

portsn:
Specifies the port Image] uses to determine if another instance is running
Example 1: -portl (use default port address + 1)

port2 (use default port address + 2

Example 3: -portd (do not check for another instance)

macro path [aral
Runs a macro or script, passing it an optional argument,
which can be retieved using getArgument()
Exanple 1: -macro analyze.ijm
Example 2: -macro analyze /Users/wayne/inages/stackl
batch path [arg]
Runs a macro batch (no GUI) mode, passing
Inage] exits when the macro finishes.

or script in

t an optional argument

eval "macro code"
Evaluates macro code
Example 1: -gval "print(*Hello, world');"
Example 2: -eval "return getVersion();"

run command
Runs an Inage) menu command
Example: -run "About Imagel

Wayne Rasband Cwsrénih.gev)

public class Inage) extends Frame implements Actionlistener,
MouseListener, Keylistener, WindowListener, Itemlistener, Runnable {

/** Plugins should call I1.getVersion() to get the version string. */

1) imagePlus java

>y <>

€
[2 Problems | @ Javadoc | [Declaration | I Console 8 4" Search
<terminated> Imagel ava Application] /System/Li 14

X %| . BEE
(0ct 18,2010 402:01)

5 %5 vebug [l

s = 8| rer =8
| %
% search
» Search expression:
icons M [co

} Search scope Default

GoTo
Contents 5 Related Topics

0 Bookmarks [Index

We wrote some unit tests to ensure that existing
Imaged behavior is preserved when code is
changed. We currently have test cases for around
50 core Imaged classes, though more are still
needed for full coverage.

ere we see the Eclipse development environment
executing our many unit tests: 1,000 robot monkeys
each repeating a different little task. The green
checkmarks mean the tests are passing.

Hudson, our continuous integration system, makes it
less likely for us to break the program without
noticing for a long period of time by automatically
performing builds, running tests, and emailing us if
something goes wrong.

Here, Hudson reports that all is well with the latest
code—though the little cloud next to Imaged means
that there was a failure one of the last five times. If
the build or tests are broken, the blue circle turns
red, and the weather gets stormy.

@ Chrome File Edit View History Bookmarks Window Help

| Timeline

10/18/10: Yesterday

@

)

]

@ 1330l
F

)

3

2100 900=—eEmEQ

10/15/10:

DB BEE

The web-based Trac project management system
makes it easier to organize everyone's pending

tasks, and keep track of the problems people have

reported with ImageJ.

This is a view of the Trac showing a history of activity

over the past 30 days. A Changeset means that
somebody made a change to the code, while a

Ticket event indicates progress or discussion on a
bug or task in the bug tracking system.

Dependency Graph
I'I:E'.Sl] Search:

= mines-jtk i it
'~ 20100113 [compile _ i
jcampils] 1.43 [compile] 4.8.1 [test]

_ imglib-algorithms imglib-ij

- = 5 5 :
= 3 0-SNAPSHOT [compile] 20 SHARSHOL |ampile]

‘/"’

- imglib
2.0-5NAPSHOT [compile]

= jama
'— 1.0.2 [compile]

. mpicbg
'—' 20100908 [compile]

The Maven project management and build tool helps
to keep dependencies organized. While | have
touted modularity as a good thing, as you develop
more and more modules that depend on one
another, it helps to have a way to visualize these
relationships. Here we see a graph of project
dependencies, generated in Eclipse using the

Maven plugin, for imglib, which currently consists of
four modules.

describe briefly

) B

<0 (Charged) [19108:03 Q

@ Chrome File Edit View History Bookmarks Window Help

All projects share one version of the dependency

At least one project has a differing version of the dependency

You have SNAPSHOT dependencies.

Dependencies used in sub-projects

com.sun:tools

<Y

imagej:bf-imglib

One great feature of Maven is the ability to generate
a website for your project with various reports and
code analysis. Here we see a Maven-generated
site report that summarizes the dependencies of
our ImagedJ 2.0 development code.

Maven integrates very nicely with a large number of
powerful project management tools, such as
automated bug detection and code coverage
analysis. And as new tools are developed, it's likely
that the software development community will
integrate them with Maven as well, making it easier
for us to take advantage of them.

Vision € 2
Aims
Design

Progress _ 4
Future Directions

54

Hopefully our vision and aims gave you a pretty good
idea of our future directions for the project. But we'll
briefly summarize what to expect in the next year
and beyond.

Future Directions

Pursue Adaptation design for IJ 2.0

N-dimensional image data model

Investigate standards useful to ImageJ

- Rich client platform for user interface
- Modularity and interoperability: e.g., OSGi
- ROls: e.g., JHotDraw

Improve headless behavior

55

Implement community requirements

Our primary goal is to create a version of Imaged 2 that can
communicate with the current ImagedJ 1 application,
operating as faithfully as possible to preserve backwards
compatibility and keep existing plugins and macros
working.

For the 2.0 version, we will pursue an interface-driven,
modular design with good separation of concerns, based
on the current Imaged 1 codebase, but without being
overly constrained by it. In general, if we need to change
something, the Adaptation design gives us the ability to
do so without breaking backward compatibility.

We will do our best to apply industry standard software
engineering tools and practices, so that ImageJ
development can be driven not just by the ImageJdDev
project, but by the community as a whole.

Summary

* What Will Imaged 2.0 Do for Me?
- Work with existing plugins and macros
- Work with new, exciting plugins and scripts
- Handle larger, more complex datasets
- Multidimensional visualization tools
— Easier to link with other software
- Easier plugin management

56

To conclude, Imaged 2 will work with existing plugins
and macros, while enabling the use of new kinds of
plugins and scripts as well. In particular, it will
support images that are larger and more complex,
with additional dimensions that can be visualized in
a variety of ways. For developers, it will be easier to
invoke ImagedJ from other software—and for users
it will be easier to manage which plugins you have
installed, and keep them up to date.

Acknowledgements

* Principal Investigators

- Keuvin Eliceiri (LOCI), Rudolf Oldenbourg (MBL), Anne Carpenter (Broad)

e Developers

- Grant Harris, Barry DeZonia, Aivar Grislis, Rick Lentz (ImageJDev)

- Lee Kamentsky, Adam Fraser (CellProfiler)

» Collaborators
- Wayne Rasband (ImageJ)

- Pavel Tomancak, Johannes Schindelin, Albert Cardona (Fiji)
- Stephan Preibisch, Stephan Saalfeld (Imglib, Fiji)
- Mark Longair, Jean-Yves Tinevez (Fiji)

- Jason Swedlow, OMERO development team (OME) 57

| would like to thank everyone involved in the project,
including our collaborators, Mark Longair for his
tubeness plugin, and Jean-Yves Tinevez

Also thank the other Fiji developers, including Mark
Longair (tubeness) and Jean-Yves Tinevez (imglib)

Also thank NIH and the stimulus funds

ﬁ

Discussion

« Comments? Questions?
» Thoughts on what ImagedJ 2.0 should be?

* Ideas from the community

58

Design Approaches

Design Approaches

1. Iterative 2. Greenfield

» Pro: No project forks * Pro: Great flexibility

* Pro: Maintains compatibility * Pro: Rapid development

whenever possible .
P * Pro: New code is “under test”

» Pro: Brings code “under test”
e « Con: No compatibility
» Con: Heavily constrained by _ .
the existing design » Con: Forks the project
e Con: Loses legacy codebase's

» Con: Development is slo
e I W “‘embedded knowledge”

60

Let's start by talking about a purely evolutionary
approach to software development. As features are
needed, they are added to Imaged one by one.
Eventually, when we meet our goals, we declare a
“2.0” release of Imaged, and continue from there.

This approach is how ImagedJ has been developed for
the past decade, and it has a lot going for it—in
particular, with care it is possible to maintain
compatibility with existing plugins indefinitely.

However, the compatibility comes at an increasingly
steep cost. As ideas are developed and improved,
the prior paradigms must be kept in place, and the
code becomes increasingly hard to understand.
Worse, some paradigms end up being very difficult
to shoehorn into the existing code structure.

Design Approaches

1. lterative 2. Greenfield
* Pro: No project forks » Pro: Great flexibility
e Pro: Maintains compatibility * Pro: Rapid development

whenever possible o Y
P * Pro: New code is “under test

¢ Pro: Brings code “under test”
"o 3 e Con: No compatibility

« Con: Heavily constrained by

the existing design » Con: Forks the project

« Con: Loses legacy codebase's

. : Devel is sl
Con: Development is slow “embedded knowledge”

61

Contrast that with a naive “greenfield” design, where we
redesign the software from the ground up. In a very real
sense, the new application is not a version upgrade, but
rather a brand new program.

This approach is very common when developers feel they
are hitting the ceiling on what is feasible with the existing
“legacy” software. Of particular advantage is the fact that
there are very few constraints on the new design.

However, a greenfield design inherently has zero
compatibility with the legacy application—existing code
will not work with the new application unless it is
reworked to use the updated paradigms.

Lastly, while the new design may apply conceptual lessons
learned from the legacy application, it loses the
“embedded knowledge” present in the existing codebase,
discovered through years of effort, blood, sweat and
tears.

Design Approaches

1. lterative + 2. Greenfield

?

62

Both approaches have advantages, but also serious
difficulties—is there a combined approach that
achieves the best aspects of both?

Design Approaches

Approach #3: Delegation

» Good compatibility
» Good design flexibility
« But very disruptive of legacy work

63

One possibility we seriously considered is a delegation
model. With this approach, we create a new [J2
application, and then transform IJ1 over time to rely on
|J2 routines for its core functionality.

In many ways this scheme seems promising, because it
keeps compatibility in mind, while allowing substantial
freedom in the new design. In some cases, the 1J1
application could even gain access to new 1J2 features
“for free.”

Unfortunately, in some ways the new design is still
inherently constrained by the needs of the legacy
application. That is, 1J2 must be capable of doing
everything |J1 can do, in a compatible paradigm.

Lastly, as more and more |J1 code is refactored into

delegation calls to 1J2, it becomes increasingly necessary

to understand the 1J2 design as well, making continued
|J1 development difficult.

Design Approaches

Approach #4:. Adaptation

* Nearly perfect compatibility

« Smooth transition from legacy code

- Legacy work continues as long as needed

64

These issues lead us to propose a different design based
on adaptation. The trick is to create a compatibility layer,
or “adapter,” that converts data between the 1J1 and 1J2
data representations, transforming our problem of
compatibility into one of interoperability.

In some ways this approach is the inverse of the delegation
model: instead of forcing 1J1 to depend on 1J2, it's the
other way around. Specifically, we enable 1J2 to use 1J1
as a library to execute existing plugins, transforming the
data between representations as needed. (In many cases
the transformation will be very efficient, as image data
structures can share references to primitive arrays.)

Another major advantage of this approach is that 1J1
development can continue until 1J2 has reached full
maturity. During the transition, users needing maximum
stability can continue using 1J1, while those desiring new
features can adopt 1J2.

Design Approaches

Approach #4:. Adaptation

« Some limits to interoperability

» Harnesses “embedded knowledge” of
legacy work without being constrained by it

65

It is worth pointing out that this design does have some
minor interoperability limitations. Specifically, new 1J2
data structures may not translate perfectly to the old 1J1
data model. For example, if 1J2 supports a new kind of
ROI, or a new pixel type, it might not be expressible in
terms 1J1 can understand.

Fortunately, in such situations, there are unlikely to be
existing 1J1 plugins that would benefit greatly from the
new structures—and if there are, they can be updated to
run natively in 1J2.

Lastly, we can continue to benefit from the last decade of
effort by branching the ImagedJ 2.0 codebase from |J1,
rather than starting from scratch with a purely greenfield
design. Because 1J2 is not directly responsible for
compatibility with 1J1, we are free to change the design
as needed to encompass new features and ideas.

ImagelX on rich client platform

1J1 Plugins discovered

PlugIns and inserted in menus

.........

Virtual
ImagePlus

)2 Core 0z -11

Adapter
Modules imgLib %3

Invisible instance of Imagel

66

This diagram illustrates how the adaptation design
would allow IJ2 to interoperate with [J1 as a library.

Existing 1J1 plugins are discovered and listed in the 1J2
application's menu, as normal. When one of them is
invoked, the input data is transformed via the adapter
into an |J1-based representation such as an
ImagePlus object. If an 1J2 plugin is later invoked on
the result, it is transformed back into an 1J2-based
representation such as an imglib image object.

Although this description is a simplification of the
procedure needed, hopefully it illustrates the
essential principle.

Community Use Cases

Use Cases: VisBio

» Limited support for large datasets

- Image planes larger than 2GB

- Datasets larger than available RAM

- VirtualStacks cache only one plane at a time
e No support for 3D visualization

- Volume rendering

— Arbitrary slicing

- Realtime animation
* Also needs better support for ROls

Use Cases: Slim Plotter

» No support for new dimensions
- Emission spectra
- Lifetime
- Polarization
* No support for processing inherent to viz
- Exponential curve fitting
- Spectral unmixing

Use Cases: Fiji

Distributing plugins is external to ImageJ
Keeping everything up to date is complex
No standard for documenting plugins

Not easy enough to prototype algorithms

- Plugins require too much boilerplate code

- No modular command framework for using
Macro Recorder with scripts

- Case logic for multiple pixel types is messy
AWT dependencies preclude headless use

Use Cases: TrakEM?2

» No support for displaying registered images
~ No display mechanism for multiple image tiles

- No mechanism for transformation from data to
display (e.g., affine)

* Regions of interest are limited
- No vector-based ROIs (i.e., ROls are bitmasks)
- Multiple ROls are tacked on (ROI Manager)

- Confusing interplay between ROls, masks &
thresholds with measurement tools

Use Cases: ROIs (Michael Doube)

» Recently I've been frustrated by ROIl's being limited to
2D. With the emerging utility of the 3D viewer and the
proposal that Imaged 2.0 handles N-dimensional data,
it makes sense that ROls should keep up with this
development.

In other words, in an N-dimensional image, one should
be able to specify and visualise an N-dimensional ROI.
So you can have a 3D VOI, and a 4D VOI with time
limits (or even changing shape over time), or limit the
ROI to a channel (5D).

Use Cases: ROls (J-Y Tinevez)

| recently tried to code weird shapes as ROIs in ImagedJ. They
were the results of a segmentation with constrained shapes.
Because | wanted to have something nice for the user, The
ROIs had to be mouse-interactive (resizable, moveable etc..). |
had a difficult time.

Johannes proposed on the Fiji-devel list an abstract class
whose goal was to facilitate this interaction.

But we still gave to comply to ImageJ ij.gui.Roi master class,
which is a concrete class in charge of drawing rectangle ROls.
Inside this class, there is everything: the logic to draw it, to
interact with the user, with the image container, and the image
data. Any homemade ROI must inherit from this class, there is
no interface to implement.

Use Cases: ROls (J-Y Tinevez)

What | would like to propose here is to go for an interface
hierarchy for ROls, that is well decoupled, and that would allow
the flexible design of new ROls.

We use ROls for many purposes, for instance:

- user interaction

» draw a rectangle to crop an image
» measure intensity with a complex area
» add non-destructive annotations

- as input/output for plugins, for instance a result of segmentation
From this you can see that they need to:

- know how to draw themselves as an overlay

- comply to some interface to be an input of some plugins

- know how to interact with mouse clicks and drag

Use Cases: pManager (N. Stuurman)

* 1. The Brightness/Contrast tool. Display of the histogram
cannot be reliably set to the dynamic range of the camera
(.e., it always automatically goes back to the range of the
minimum and maximum pixel value in the image, which
can be extremely deceptive). No gamma correction. No
method to update histogram when the image changes. No
log display of the histogram. We ended up writing our
own, but things are still clunky because acquired images
(shown in a modified Image5D viewer) can only be
controlled by the ImagedJ B&C tool.

Use Cases: pManager (N. Stuurman)

» 2. Lack of plugin API. We have been bitten a number of
times by internal changes in Imaged breaking our code.
Wayne is very responsive, but this still causes confusion.

3. Lack of standard for Multi-Dimensional viewer. We
ended up using ImageSD viewer, Hyperstacks came later.
My impression is that the Ul of ImageSD is easier for users
than the Ul of Hyperstacks. In any case, we will be helped
by a standard viewer for multi-dimensional images that
integrates nicely with other Imaged tools (like 3D viewers),
and that is extensible (we do need to add a number of
buttons that interface with image acquisition).

Use Cases: pManager (N. Stuurman)

» 4 MDI versus SDI. Not sure if this was on your list already
(all of you have certainly debated this in the past!), but it
seems that many people prefer the MDI model. On the
Mac, it is pretty weird that a single application has different
menus depending on which window you select (in our
case, ImageJ windows versus Micro-manager window).

Use Cases: Miscellaneous

» G. Landini: no color space support (e.g., HSB)

* F. Hessman: domain coordinate systems
~ S&S are planning support within imglib
- ImageJX consensus is to punt on this for now
- Need to find a group with this use case first

» Legacy AWT interface limits use of Swing

- Imaged cannot use different L&Fs
- AWT is missing features (JSpinner, JInternalPane)
- Swing development is active, unlike legacy AWT

Use Cases: Compatibility

» Advantage of Imaged: wealth of existing code
» Problem: ImageJ2 will break that code

« Examples:
- ImageProcessor.getPixels()
- All non-private, non-final fields
- Subclasses created to sidestep APl issues
- Even private fields—setAccessible(true)

Use Cases: Interoperability

* FARSIGHT: ITK-driven segmentation routines
are difficult to use from Java

 CellProfiler: How can scientists combine
workflows between CellProfiler and Imaged?

« OMERO: Database-backed images are kludgy
» Others: KNIME, Endrov, BiolmageXD, PSLID...

Use Cases: Performance

 Traditional tradeoff between space & time

* Tradeoff between generality & performance

- Moving toward generality requires that we
remain aware of performance issues

- But flexibility and usability remain paramount

* OpenCL is promising but negates many of
imglib's gains in generality

Components of ImageJ2

* Relevant technologies
1)Data model — imglib library
2)Display — Java AWT, JAI, Swing, RCP
3)Input/output — Bio-Formats architecture
4)Regions of interest — Java AWT, JHotDraw, OME-XML
5)Scripting & plugins — Java 6 Scripting Framework
* More exploration of some technologies needed

ImageJX: Separation of Concerns b

83

Decouple GUI dependencies
 Alternative GUI configurations (e.g., Swing
SDI/MDI)
» Headless operation
* Incorporation into application framework
« Easing use as a library

84

GUI Decoupling

File Edit Image Process Analyze Plugins Window Help

B o]~ 7|~ 4l+3A] ool |7]kle] |

stsas =
i [R
E | File Edit Image Process Analyze Plugins Window Help | ImageWindow
i

ImageCanvas

P [EclcoNRNAFRA] oo [Flala] |

f
f
: |Texttoo| I |
f
f
f

..
|
B olz|of~=|~+ A A [afels] [Flalz] |

|
I

85

Image Processing GUI components with default
implementations in javax.swing

Mostly Jpanels

Other developers can provide alternate
implementations of the interfaces we define.

Dynamic Plugin Discovery

» Declarative Registration using Annotations

- Menus, etc., are built dynamically from
plugin declarations

e Classes do not neet to be loading
- Uses ‘compile-time caching’ (SezPoz)
 ‘Automatic Plugins’

- /O (Bio-Formats reader)

- Display—invoke a plugin in response to a
particular kind of data being opened

86

Dynamic Plugin Discovery

tionEvent

87

Toward Modularity & Extensibility

» Use interfaces, abstract classes, factories

- Replaceable implementations
- Enables dynamic assembly

» @ServiceProvider (e.g. SavePrefs)
» CentralLookup

* ‘Injectable Singletons’

» EventBus

» Context / Selection management

88

	Title
	Slide 2
	Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	ImageJ OpenCL Plugin
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

